• Steven Ponce
  • About
  • Data Visualizations
  • Projects
  • Resume
  • Email

On this page

  • Steps to Create this Graphic
    • 1. Load Packages & Setup
    • 2. Read in the Data
    • 3. Examine the Data
    • 4. Tidy Data
    • 5. Visualization Parameters
    • 6. Plot
    • 7. Save
    • 8. Session Info
    • 9. GitHub Repository
    • 10. References

Shooting Performance Variability Across NBA Teams (2023-24)

  • Show All Code
  • Hide All Code

  • View Source

Field goal percentage distribution with statistical outliers highlighted in red

30DayChartChallenge
Data Visualization
R Programming
2025
This visualization explores the distribution of field goal percentages across NBA teams during the 2023-24 season, with a focus on identifying statistical outliers. Using boxplots with overlaid data points, the chart reveals which teams maintained consistent shooting performance versus those with more variable results. Statistical outliers (defined using the 1.5×IQR rule) are highlighted in red, providing insights into exceptional shooting performances and unusually poor shooting nights.
Author

Steven Ponce

Published

April 7, 2025

Figure 1: A boxplot showing field goal percentage distribution across NBA teams for the 2023-24 season. Teams are ordered vertically by median percentage, with Indiana at the top. Statistical outliers are highlighted as red dots. A dashed blue vertical line indicates the league mean FG%. The chart reveals which teams have more consistent shooting performance versus those with extreme outlier games.

Steps to Create this Graphic

1. Load Packages & Setup

Show code
## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
pacman::p_load(
  tidyverse,      # Easily Install and Load the 'Tidyverse'
  ggtext,         # Improved Text Rendering Support for 'ggplot2'
  showtext,       # Using Fonts More Easily in R Graphs
  janitor,        # Simple Tools for Examining and Cleaning Dirty Data
  skimr,          # Compact and Flexible Summaries of Data
  scales,         # Scale Functions for Visualization
  lubridate,      # Make Dealing with Dates a Little Easier
  hoopR,          # Access Men's Basketball Play by Play Data
  camcorder       # Record Your Plot History
)
})

### |- figure size ----
gg_record(
    dir    = here::here("temp_plots"),
    device = "png",
    width  = 8,
    height = 10,
    units  = "in",
    dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))

2. Read in the Data

Show code
# Get player stats for the 2023-2024 NBA season
nba_teams_2024 <- load_nba_team_box(seasons = 2024) 

3. Examine the Data

Show code
glimpse(nba_teams_2024)
skim(nba_teams_2024)

4. Tidy Data

Show code
### |- Tidy ----
nba_teams_2024 <- nba_teams_2024 |> 
  filter(team_abbreviation != "EAST" & team_abbreviation != "WEST") |> 
  mutate(
    team_abbreviation = fct_reorder(team_abbreviation, field_goal_pct, median)
  ) 

# outliers df        
outliers_df <- nba_teams_2024 |> 
  mutate(
    q1 = quantile(field_goal_pct, 0.25, na.rm = TRUE),
    q3 = quantile(field_goal_pct, 0.75, na.rm = TRUE),
    iqr = q3 - q1,
    is_outlier = field_goal_pct < (q1 - 1.5 * iqr) | 
    field_goal_pct > (q3 + 1.5 * iqr),
    .by = team_abbreviation
    ) |>
  filter(is_outlier)

5. Visualization Parameters

Show code
### |- plot aesthetics ---- 
colors <- get_theme_colors(palette = NULL)

### |-  titles and caption ----
# text
title_text    <- str_glue("Shooting Performance Variability Across NBA Teams (2023-24)") 
subtitle_text <- str_glue("Field goal percentage distribution with statistical outliers highlighted in red")

# Create caption
caption_text <- create_dcc_caption(
  dcc_year = 2025,
  dcc_day = 07,
  source_text =  "ESPN via { hoopR } package" 
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
  base_theme,
  theme(
    # Text styling 
    plot.title = element_text(face = "bold", family = fonts$title, size = rel(1.14), margin = margin(b = 10)),
    plot.subtitle = element_text(family = fonts$subtitle, color = colors$text, size = rel(0.78), margin = margin(b = 20)),
    
    # Axis elements
    axis.title = element_text(color = colors$text, size = rel(0.8)),
    axis.text = element_text(color = colors$text, size = rel(0.7)),
    
    axis.line.x = element_line(color = "gray50", linewidth = .2),

    # Grid elements
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
 
    # Legend elements
    legend.position = "plot",
    legend.title = element_text(family = fonts$text, size = rel(0.8)),
    legend.text = element_text(family = fonts$text, size = rel(0.7)),
    
    # Plot margins 
    plot.margin = margin(t = 10, r = 20, b = 10, l = 20),
  )
)

# Set theme
theme_set(weekly_theme)

6. Plot

Show code
### |-  Plot ----
p <- ggplot(
  data = nba_teams_2024,
  aes(y = team_abbreviation, x = field_goal_pct)
) +
  # Geoms
  geom_boxplot(fill = "lightgray", alpha = 0.2, outlier.shape = NA) +
  geom_jitter(height = 0.2, alpha = 0.2, color = "darkgray", size = 1.5) +
  geom_point(
    data = outliers_df,
    color = "red", size = 2.5
  ) +
  geom_vline(
    xintercept = mean(nba_teams_2024$field_goal_pct, na.rm = TRUE),
    linetype = "dashed", color = "blue", alpha = 0.8
  ) +
  annotate(
    "text", 
    x = mean(nba_teams_2024$field_goal_pct, na.rm = TRUE), 
    y = levels(nba_teams_2024$team_abbreviation)[length(levels(nba_teams_2024$team_abbreviation))],
    label = "League Mean FG%",  
    vjust = -2.1,
    color = "blue", 
    size = 4, 
    alpha = 0.8,
    fontface = "bold"
  ) +
  # Scales
  scale_x_continuous(labels = scales::number_format(suffix ="%")) +
  scale_y_discrete(
    expand = expansion(0.05, 0.0)
  ) +
  # Labs
  labs(
    title = title_text,
    subtitle = subtitle_text,
    caption = caption_text,
    y = "Team",
    x = "Field Goal Percentage"
  ) +
  # Theme
  theme(
    plot.title = element_text(
      size = rel(1.4),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      margin = margin(t = 5, b = 5)
    ),
    plot.subtitle = element_text(
      size = rel(0.95),
      family = fonts$subtitle,
      color = colors$subtitle,
      lineheight = 1.2,
      margin = margin(t = 5, b = 30)
    ),
    plot.caption = element_markdown(
      size = rel(0.6),
      family = fonts$caption,
      color = colors$caption,
      lineheight = 0.65,
      hjust = 0.5,
      halign = 0.5,
      margin = margin(t = 10, b = 5)
    ),
  )

7. Save

Show code
### |-  plot image ----  

save_plot(
  p, 
  type = "30daychartchallenge", 
  year = 2025, 
  day = 07, 
  width = 8, 
  height = 10
  )

8. Session Info

TipExpand for Session Info
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] here_1.0.1      camcorder_0.1.0 hoopR_2.1.0     scales_1.3.0   
 [5] skimr_2.1.5     janitor_2.2.0   showtext_0.9-7  showtextdb_3.0 
 [9] sysfonts_0.8.9  ggtext_0.1.2    lubridate_1.9.3 forcats_1.0.0  
[13] stringr_1.5.1   dplyr_1.1.4     purrr_1.0.2     readr_2.1.5    
[17] tidyr_1.3.1     tibble_3.2.1    ggplot2_3.5.1   tidyverse_2.0.0

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1    farver_2.1.2        fastmap_1.2.0      
 [4] pacman_0.5.1        promises_1.3.0      digest_0.6.37      
 [7] timechange_0.3.0    lifecycle_1.0.4     rsvg_2.6.1         
[10] processx_3.8.4      magrittr_2.0.3      compiler_4.4.0     
[13] rlang_1.1.4         tools_4.4.0         utf8_1.2.4         
[16] yaml_2.3.10         data.table_1.16.2   knitr_1.49         
[19] labeling_0.4.3      htmlwidgets_1.6.4   curl_6.0.0         
[22] xml2_1.3.6          repr_1.1.7          websocket_1.4.2    
[25] withr_3.0.2         grid_4.4.0          fansi_1.0.6        
[28] colorspace_2.1-1    future_1.34.0       progressr_0.15.1   
[31] globals_0.16.3      cli_3.6.3           rmarkdown_2.29     
[34] ragg_1.3.3          generics_0.1.3      RcppParallel_5.1.10
[37] rstudioapi_0.17.1   httr_1.4.7          tzdb_0.4.0         
[40] commonmark_1.9.2    chromote_0.4.0      rvest_1.0.4        
[43] parallel_4.4.0      base64enc_0.1-3     vctrs_0.6.5        
[46] jsonlite_1.8.9      hms_1.1.3           listenv_0.9.1      
[49] systemfonts_1.1.0   magick_2.8.5        glue_1.8.0         
[52] parallelly_1.43.0   gifski_1.32.0-1     codetools_0.2-20   
[55] ps_1.8.1            stringi_1.8.4       gtable_0.3.6       
[58] later_1.3.2         munsell_0.5.1       furrr_0.3.1        
[61] pillar_1.9.0        htmltools_0.5.8.1   R6_2.5.1           
[64] textshaping_0.4.0   rprojroot_2.0.4     evaluate_1.0.1     
[67] markdown_1.13       gridtext_0.1.5      snakecase_0.11.1   
[70] renv_1.0.3          Rcpp_1.0.13-1       svglite_2.1.3      
[73] xfun_0.49           pkgconfig_2.0.3    

9. GitHub Repository

TipExpand for GitHub Repo

The complete code for this analysis is available in 30dcc_2025_07.qmd.

For the full repository, click here.

10. References

TipExpand for References
  1. Data Sources:
    • ESPN via { hoopR } package: hoopR
Back to top
Source Code
---
title: "Shooting Performance Variability Across NBA Teams (2023-24)"
subtitle: "Field goal percentage distribution with statistical outliers highlighted in red"
description: "This visualization explores the distribution of field goal percentages across NBA teams during the 2023-24 season, with a focus on identifying statistical outliers. Using boxplots with overlaid data points, the chart reveals which teams maintained consistent shooting performance versus those with more variable results. Statistical outliers (defined using the 1.5×IQR rule) are highlighted in red, providing insights into exceptional shooting performances and unusually poor shooting nights."
author: "Steven Ponce"
date: "2025-04-07" 
categories: ["30DayChartChallenge", "Data Visualization", "R Programming", "2025"]
tags: [
"ggplot2",
"boxplot",
"hoopR",
"NBA",
"sports analytics",
"outlier detection",
"statistical distribution",
"basketball",
"data storytelling",
"exploratory data analysis"
  ]
image: "thumbnails/30dcc_2025_07.png"
format:
  html:
    toc: true
    toc-depth: 5
    code-link: true
    code-fold: true
    code-tools: true
    code-summary: "Show code"
    self-contained: true
    theme: 
      light: [flatly, assets/styling/custom_styles.scss]
      dark: [darkly, assets/styling/custom_styles_dark.scss]
editor_options: 
  chunk_output_type: inline
execute: 
  freeze: true                                                  
  cache: true                                                   
  error: false
  message: false
  warning: false
  eval: true
# filters:
#   - social-share
# share:
#   permalink: "https://stevenponce.netlify.app/data_visualizations/30DayChartChallenge/2025/30dcc_2025_07.html"
#   description: "Exploring NBA shooting performance variability across teams in the 2023-24 season. Which teams show consistent field goal percentages, and which teams have the most outlier games? Check out this visualization highlighting statistical distribution and outliers in NBA team shooting."
#   twitter: true
#   linkedin: true
#   email: true
#   facebook: false
#   reddit: false
#   stumble: false
#   tumblr: false
#   mastodon: true
#   bsky: true
---

![ A boxplot showing field goal percentage distribution across NBA teams for the 2023-24 season. Teams are ordered vertically by median percentage, with Indiana at the top. Statistical outliers are highlighted as red dots. A dashed blue vertical line indicates the league mean FG%. The chart reveals which teams have more consistent shooting performance versus those with extreme outlier games.](30dcc_2025_07.png){#fig-1}

### <mark> **Steps to Create this Graphic** </mark>

#### 1. Load Packages & Setup

```{r}
#| label: load
#| warning: false
#| message: false      
#| results: "hide"     

## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
pacman::p_load(
  tidyverse,      # Easily Install and Load the 'Tidyverse'
  ggtext,         # Improved Text Rendering Support for 'ggplot2'
  showtext,       # Using Fonts More Easily in R Graphs
  janitor,        # Simple Tools for Examining and Cleaning Dirty Data
  skimr,          # Compact and Flexible Summaries of Data
  scales,         # Scale Functions for Visualization
  lubridate,      # Make Dealing with Dates a Little Easier
  hoopR,          # Access Men's Basketball Play by Play Data
  camcorder       # Record Your Plot History
)
})

### |- figure size ----
gg_record(
    dir    = here::here("temp_plots"),
    device = "png",
    width  = 8,
    height = 10,
    units  = "in",
    dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))
```

#### 2. Read in the Data

```{r}
#| label: read
#| include: true
#| eval: true
#| warning: false

# Get player stats for the 2023-2024 NBA season
nba_teams_2024 <- load_nba_team_box(seasons = 2024) 
```

#### 3. Examine the Data

```{r}
#| label: examine
#| include: true
#| eval: true
#| results: 'hide'
#| warning: false

glimpse(nba_teams_2024)
skim(nba_teams_2024)
```

#### 4. Tidy Data

```{r}
#| label: tidy
#| warning: false

### |- Tidy ----
nba_teams_2024 <- nba_teams_2024 |> 
  filter(team_abbreviation != "EAST" & team_abbreviation != "WEST") |> 
  mutate(
    team_abbreviation = fct_reorder(team_abbreviation, field_goal_pct, median)
  ) 

# outliers df        
outliers_df <- nba_teams_2024 |> 
  mutate(
    q1 = quantile(field_goal_pct, 0.25, na.rm = TRUE),
    q3 = quantile(field_goal_pct, 0.75, na.rm = TRUE),
    iqr = q3 - q1,
    is_outlier = field_goal_pct < (q1 - 1.5 * iqr) | 
    field_goal_pct > (q3 + 1.5 * iqr),
    .by = team_abbreviation
    ) |>
  filter(is_outlier)
```

#### 5. Visualization Parameters

```{r}
#| label: params
#| include: true
#| warning: false

### |- plot aesthetics ---- 
colors <- get_theme_colors(palette = NULL)

### |-  titles and caption ----
# text
title_text    <- str_glue("Shooting Performance Variability Across NBA Teams (2023-24)") 
subtitle_text <- str_glue("Field goal percentage distribution with statistical outliers highlighted in red")

# Create caption
caption_text <- create_dcc_caption(
  dcc_year = 2025,
  dcc_day = 07,
  source_text =  "ESPN via { hoopR } package" 
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
  base_theme,
  theme(
    # Text styling 
    plot.title = element_text(face = "bold", family = fonts$title, size = rel(1.14), margin = margin(b = 10)),
    plot.subtitle = element_text(family = fonts$subtitle, color = colors$text, size = rel(0.78), margin = margin(b = 20)),
    
    # Axis elements
    axis.title = element_text(color = colors$text, size = rel(0.8)),
    axis.text = element_text(color = colors$text, size = rel(0.7)),
    
    axis.line.x = element_line(color = "gray50", linewidth = .2),

    # Grid elements
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
 
    # Legend elements
    legend.position = "plot",
    legend.title = element_text(family = fonts$text, size = rel(0.8)),
    legend.text = element_text(family = fonts$text, size = rel(0.7)),
    
    # Plot margins 
    plot.margin = margin(t = 10, r = 20, b = 10, l = 20),
  )
)

# Set theme
theme_set(weekly_theme)
```

#### 6. Plot

```{r}
#| label: plot
#| warning: false

### |-  Plot ----
p <- ggplot(
  data = nba_teams_2024,
  aes(y = team_abbreviation, x = field_goal_pct)
) +
  # Geoms
  geom_boxplot(fill = "lightgray", alpha = 0.2, outlier.shape = NA) +
  geom_jitter(height = 0.2, alpha = 0.2, color = "darkgray", size = 1.5) +
  geom_point(
    data = outliers_df,
    color = "red", size = 2.5
  ) +
  geom_vline(
    xintercept = mean(nba_teams_2024$field_goal_pct, na.rm = TRUE),
    linetype = "dashed", color = "blue", alpha = 0.8
  ) +
  annotate(
    "text", 
    x = mean(nba_teams_2024$field_goal_pct, na.rm = TRUE), 
    y = levels(nba_teams_2024$team_abbreviation)[length(levels(nba_teams_2024$team_abbreviation))],
    label = "League Mean FG%",  
    vjust = -2.1,
    color = "blue", 
    size = 4, 
    alpha = 0.8,
    fontface = "bold"
  ) +
  # Scales
  scale_x_continuous(labels = scales::number_format(suffix ="%")) +
  scale_y_discrete(
    expand = expansion(0.05, 0.0)
  ) +
  # Labs
  labs(
    title = title_text,
    subtitle = subtitle_text,
    caption = caption_text,
    y = "Team",
    x = "Field Goal Percentage"
  ) +
  # Theme
  theme(
    plot.title = element_text(
      size = rel(1.4),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      margin = margin(t = 5, b = 5)
    ),
    plot.subtitle = element_text(
      size = rel(0.95),
      family = fonts$subtitle,
      color = colors$subtitle,
      lineheight = 1.2,
      margin = margin(t = 5, b = 30)
    ),
    plot.caption = element_markdown(
      size = rel(0.6),
      family = fonts$caption,
      color = colors$caption,
      lineheight = 0.65,
      hjust = 0.5,
      halign = 0.5,
      margin = margin(t = 10, b = 5)
    ),
  )
```

#### 7. Save

```{r}
#| label: save
#| warning: false

### |-  plot image ----  

save_plot(
  p, 
  type = "30daychartchallenge", 
  year = 2025, 
  day = 07, 
  width = 8, 
  height = 10
  )
```

#### 8. Session Info

::: {.callout-tip collapse="true"}
##### Expand for Session Info

```{r, echo = FALSE}
#| eval: true
#| warning: false

sessionInfo()
```
:::

#### 9. GitHub Repository

::: {.callout-tip collapse="true"}
##### Expand for GitHub Repo

The complete code for this analysis is available in [`30dcc_2025_07.qmd`](https://github.com/poncest/personal-website/blob/master/data_visualizations/TidyTuesday/2025/30dcc_2025_07.qmd).

For the full repository, [click here](https://github.com/poncest/personal-website/).
:::


#### 10. References
::: {.callout-tip collapse="true"}
##### Expand for References

1. Data Sources:
   - ESPN via { hoopR } package: [hoopR](https://github.com/sportsdataverse/hoopR)
  
:::

© 2024 Steven Ponce

Source Issues