• Steven Ponce
  • About
  • Data Visualizations
  • Projects
  • Resume
  • Email

On this page

  • Original
  • Makeover
  • Steps to Create this Graphic
    • 1. Load Packages & Setup
    • 2. Read in the Data
    • 3. Examine the Data
    • 4. Tidy Data
    • 5. Visualization Parameters
    • 6. Plot
    • 7. Save
    • 8. Session Info
    • 9. GitHub Repository
    • 10. References

The Great Generational Divide in ‘Childish’ Perceptions

  • Show All Code
  • Hide All Code

  • View Source

Difference between 65+ and 18-34 age groups reveals surprising patterns: while older Britons typically view more activities as childish, Star Wars and Disney Films show the opposite trend

MakeoverMonday
Data Visualization
R Programming
2025
Analysis of YouGov survey data revealing how British attitudes toward ‘kidult’ activities vary dramatically by age. While older adults typically view more hobbies as childish, entertainment franchises like Star Wars and Disney Films show surprising reversals, suggesting cultural legitimization over time.
Published

September 16, 2025

Original

The original visualization Do younger Britons see ‘kidult’ hobbies as less childish?Do younger Britons see ‘kidult’ hobbies as less childish? comes from Which ‘kidult’ hobbies and practices do Britons think are really for children?

Original visualization

Makeover

Figure 1: Diverging bar chart showing generational differences in viewing activities as childish. Comic Books have the largest gap at +28 percentage points, with older adults more likely to see it as childish. Most activities follow this pattern, but Star Wars (-3 pts) and Disney Films (-6 pts) diverge in the opposite direction, with younger people more likely to view them as childish than older adults.

Steps to Create this Graphic

1. Load Packages & Setup

Show code
```{r}
#| label: load
#| warning: false
#| message: false
#| results: "hide"

## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
  if (!require("pacman")) install.packages("pacman")
  pacman::p_load(
  tidyverse,  # Easily Install and Load the 'Tidyverse'
  ggtext,     # Improved Text Rendering Support for 'ggplot2'
  showtext,   # Using Fonts More Easily in R Graphs
  scales,     # Scale Functions for Visualization
  glue        # Interpreted String Literals
  )
})

### |- figure size ----
camcorder::gg_record(
    dir    = here::here("temp_plots"),
    device = "png",
    width  = 10,
    height = 8,
    units  = "in",
    dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))
```

2. Read in the Data

Show code
```{r}
#| label: read
#| include: true
#| eval: true
#| warning: false
#|
kidult_hobbies_raw <- readxl::read_excel(
  here::here('data/MakeoverMonday/2025/pct saying kidult hobbies are entirely or mostly for children.xlsx')) |> 
  janitor::clean_names()
```

3. Examine the Data

Show code
```{r}
#| label: examine
#| include: true
#| eval: true
#| results: 'hide'
#| warning: false

glimpse(kidult_hobbies_raw)
skimr::skim_without_charts(kidult_hobbies_raw)
```

4. Tidy Data

Show code
```{r}
#| label: tidy
#| warning: false

kidult_hobbies_long <- kidult_hobbies_raw |>
  pivot_longer(
    cols = -age_group,
    names_to = "hobby",
    values_to = "percentage"
  ) |>
  mutate(
    hobby_clean = str_replace_all(hobby, "_", " ") |>
      str_to_title() |>
      str_replace("D D", "(D&D)") |>
      str_replace("Dungeons And Dragons", "Dungeons & Dragons"),
    age_group = factor(age_group, levels = c("18-34", "35-49", "50-64", "65+"))
  )

# plot data
plot_data <- kidult_hobbies_long |>
  filter(age_group %in% c("18-34", "65+")) |>
  pivot_wider(names_from = age_group, values_from = percentage, names_prefix = "age_") |>
  mutate(
    age_gap = `age_65+` - `age_18-34`,
    gap_direction = ifelse(age_gap > 0, "Older view as more childish", "Younger view as more childish"),
    abs_gap = abs(age_gap),
    # Add category for story-telling
    activity_type = case_when(
      hobby_clean %in% c("Comic Books", "Receiving Birthday Presents", "Advent Calendars") ~ "Traditional Childhood",
      hobby_clean %in% c("Star Wars", "Disney Films") ~ "Entertainment Reversal",
      hobby_clean %in% c("Stuffed Animals", "Dressing Up In Costumes") ~ "Physical Play",
      TRUE ~ "Other"
    )
  ) |>
  arrange(desc(age_gap))
```

5. Visualization Parameters

Show code
```{r}
#| label: params
#| include: true
#| warning: false

### |-  plot aesthetics ----
# Get base colors with custom palette
colors <- get_theme_colors(palette = c(
  "#2c3e50", "#e17055"
))   

### |-  titles and caption ----
title_text <- str_glue("The Great Generational Divide in 'Childish' Perceptions")

subtitle_text <-str_glue(
  "Difference between 65+ and 18-34 age groups reveals surprising patterns: while older Britons\n",
  "typically view more activities as childish, Star Wars and Disney Films show the opposite trend"
)

# Create caption
caption_text <- create_mm_caption(
  mm_year = current_year,
  mm_week = current_week,
  source_text = paste0("YouGov")
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
  base_theme,
  theme(
    # Legend formatting
    legend.position = "plot",
    legend.justification = "top",
    legend.margin = margin(l = 12, b = 5),
    legend.key.size = unit(0.8, "cm"),
    legend.box.margin = margin(b = 10),
    legend.title = element_text(face = "bold"),

    # Axis formatting
    axis.ticks.y = element_blank(),
    axis.ticks.x = element_line(color = "gray", linewidth = 0.5),
    # axis.ticks.length = unit(0.2, "cm"),
    axis.title.x = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(t = 10)
    ),
    axis.title.y = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(r = 10)
    ),
    axis.text.x = element_text(
      size = rel(0.85), family = fonts$subtitle,
      color = colors$text
    ),
    axis.text.y = element_text(
      size = rel(0.85), family = fonts$subtitle,
      color = colors$text
    ),

    # Grid lines
    panel.grid.minor = element_line(color = "#ecf0f1", linewidth = 0.2),
    panel.grid.major = element_line(color = "#ecf0f1", linewidth = 0.4),

    # Margin
    plot.margin = margin(20, 20, 20, 20)
  )
)

# Set theme
theme_set(weekly_theme)
```

6. Plot

Show code
```{r}
#| label: plot
#| warning: false

### |- final plot ----
p <- ggplot(plot_data, aes(x = age_gap, y = reorder(hobby_clean, age_gap))) +

  # Annotate
  annotate("rect",
    xmin = -15, xmax = 0, ymin = -Inf, ymax = Inf,
    fill = colors$palette[2], alpha = 0.08
  ) +
  annotate("text",
    x = -7.5, y = 8.5, label = "Younger see as\nMORE childish",
    size = 3.5, color = colors$palette[2], fontface = "bold",
    family = fonts$text,
    hjust = 0.5, vjust = 0.5, alpha = 0.7
  ) +
  annotate("text",
    x = 15, y = 8.5, label = "Older see as\nMORE childish",
    family = fonts$text,
    size = 3.5, color = colors$palette[1], fontface = "bold",
    hjust = 0.5, vjust = 0.5, alpha = 0.7
  ) +

  # Geoms
  geom_col(aes(fill = gap_direction), alpha = 0.85, width = 0.75) +
  geom_text(
    aes(
      label = ifelse(abs(age_gap) >= 3,
        paste0(ifelse(age_gap > 0, "+", ""), round(age_gap, 0)), ""
      ),
      x = age_gap + ifelse(age_gap > 0, 1.2, -1.2)
    ),
    size = 3.2, fontface = "bold", color = colors$text,
    hjust = ifelse(plot_data$age_gap > 0, 0, 1)
  ) +
  geom_vline(xintercept = 0, color = "gray20", linewidth = 1, alpha = 0.8) +

  # Scales
  scale_fill_manual(
    values = c(
      "Older view as more childish" = colors$palette[1],
      "Younger view as more childish" = colors$palette[2]
    ),
    name = "Generation Gap Direction"
  ) +
  scale_x_continuous(
    labels = function(x) paste0(ifelse(x > 0, "+", ""), x, " pts"),
    breaks = seq(-15, 30, 5),
    limits = c(-15, 33),
    expand = expansion(mult = c(0.02, 0.02)),
    position = "top"
  ) +
  scale_y_discrete() +

  # Labs
  labs(
    title = title_text,
    subtitle = subtitle_text,
    caption = caption_text,
    x = "Percentage Point Difference (65+ minus 18-34)",
    y = NULL,
  ) +

  # Theme
  theme(
    # Grid
    panel.grid.major.x = element_line(color = "gray80", linewidth = 0.15),
    panel.grid.minor = element_blank(),
    panel.grid.major.y = element_blank(),

    # Legend
    legend.position = "none",
    axis.title.x.top = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(t = 10, b = 10)
    ),
    plot.title = element_text(
      size = rel(1.85),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      lineheight = 1.1,
      margin = margin(t = 5, b = 5)
    ),
    plot.subtitle = element_text(
      size = rel(0.90),
      family = fonts$subtitle,
      color = alpha(colors$subtitle, 0.9),
      lineheight = 1.2,
      margin = margin(t = 5, b = 10)
    ),
    plot.caption = element_markdown(
      size = rel(0.6),
      family = fonts$caption,
      color = colors$caption,
      hjust = 0.5,
      margin = margin(t = 15)
    )
  )
```

7. Save

Show code
```{r}
#| label: save
#| warning: false

### |-  plot image ----  
save_plot(
  plot = p, 
  type = "makeovermonday", 
  year = current_year,
  week = current_week,
  width = 10, 
  height = 8
  )
```

8. Session Info

TipExpand for Session Info
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] here_1.0.1      glue_1.8.0      scales_1.3.0    showtext_0.9-7 
 [5] showtextdb_3.0  sysfonts_0.8.9  ggtext_0.1.2    lubridate_1.9.3
 [9] forcats_1.0.0   stringr_1.5.1   dplyr_1.1.4     purrr_1.0.2    
[13] readr_2.1.5     tidyr_1.3.1     tibble_3.2.1    ggplot2_3.5.1  
[17] tidyverse_2.0.0 pacman_0.5.1   

loaded via a namespace (and not attached):
 [1] gtable_0.3.6      xfun_0.49         htmlwidgets_1.6.4 tzdb_0.5.0       
 [5] vctrs_0.6.5       tools_4.4.0       generics_0.1.3    curl_6.0.0       
 [9] gifski_1.32.0-1   fansi_1.0.6       pkgconfig_2.0.3   skimr_2.1.5      
[13] readxl_1.4.3      lifecycle_1.0.4   farver_2.1.2      compiler_4.4.0   
[17] textshaping_0.4.0 munsell_0.5.1     repr_1.1.7        janitor_2.2.0    
[21] codetools_0.2-20  snakecase_0.11.1  htmltools_0.5.8.1 yaml_2.3.10      
[25] pillar_1.9.0      camcorder_0.1.0   magick_2.8.5      commonmark_1.9.2 
[29] tidyselect_1.2.1  digest_0.6.37     stringi_1.8.4     rsvg_2.6.1       
[33] rprojroot_2.0.4   fastmap_1.2.0     grid_4.4.0        colorspace_2.1-1 
[37] cli_3.6.4         magrittr_2.0.3    base64enc_0.1-3   utf8_1.2.4       
[41] withr_3.0.2       timechange_0.3.0  rmarkdown_2.29    cellranger_1.1.0 
[45] ragg_1.3.3        hms_1.1.3         evaluate_1.0.1    knitr_1.49       
[49] markdown_1.13     rlang_1.1.6       gridtext_0.1.5    Rcpp_1.0.13-1    
[53] xml2_1.3.6        renv_1.0.3        svglite_2.1.3     rstudioapi_0.17.1
[57] jsonlite_1.8.9    R6_2.5.1          systemfonts_1.1.0

9. GitHub Repository

TipExpand for GitHub Repo

The complete code for this analysis is available in mm_2025_38.qmd.

For the full repository, click here.

10. References

TipExpand for References
  1. Data:
  • Makeover Monday 2025 Week 38: Which ‘kidult’ hobbies do Britons think are for children?
  1. Article
  • Which ‘kidult’ hobbies do Britons think are for children?
Back to top
Source Code
---
title: "The Great Generational Divide in 'Childish' Perceptions"
subtitle: "Difference between 65+ and 18-34 age groups reveals surprising patterns: while older Britons typically view more activities as childish, Star Wars and Disney Films show the opposite trend"
description: "Analysis of YouGov survey data revealing how British attitudes toward 'kidult' activities vary dramatically by age. While older adults typically view more hobbies as childish, entertainment franchises like Star Wars and Disney Films show surprising reversals, suggesting cultural legitimization over time."
date: "2025-09-16" 
categories: ["MakeoverMonday", "Data Visualization", "R Programming", "2025"]   
tags: [
  "generational-differences",
  "cultural-trends", 
  "survey-analysis",
  "british-culture",
  "entertainment",
  "diverging-bars",
  "ggplot2",
  "data-storytelling",
  "age-demographics",
  "pop-culture"
]
image: "thumbnails/mm_2025_38.png"
format:
  html:
    toc: true
    toc-depth: 5
    code-link: true
    code-fold: true
    code-tools: true
    code-summary: "Show code"
    self-contained: true
    theme: 
      light: [flatly, assets/styling/custom_styles.scss]
      dark: [darkly, assets/styling/custom_styles_dark.scss]
editor_options: 
  chunk_output_type: inline
execute: 
  freeze: true                                      
  cache: true                                       
  error: false
  message: false
  warning: false
  eval: true
---

```{r}
#| label: setup-links
#| include: false

# CENTRALIZED LINK MANAGEMENT

## Project-specific info 
current_year <- 2025
current_week <- 38
project_file <- "mm_2025_38.qmd"
project_image <- "mm_2025_38.png"

## Data Sources
data_main <- "https://data.world/makeovermonday/do-younger-britons-see-kidult-hobbies-as-less-childish"
data_secondary <- "https://data.world/makeovermonday/do-younger-britons-see-kidult-hobbies-as-less-childish"

## Repository Links  
repo_main <- "https://github.com/poncest/personal-website/"
repo_file <- paste0("https://github.com/poncest/personal-website/blob/master/data_visualizations/MakeoverMonday/", current_year, "/", project_file)

## External Resources/Images
chart_original <- "https://raw.githubusercontent.com/poncest/MakeoverMonday/refs/heads/master/2025/Week_38/original_chart.png"

## Organization/Platform Links
org_primary <- "https://yougov.co.uk/society/articles/52851-which-kidult-hobbies-and-practices-do-britons-think-are-really-for-children"
org_secondary <- "https://yougov.co.uk"

# Helper function to create markdown links
create_link <- function(text, url) {
  paste0("[", text, "](", url, ")")
}

# Helper function for citation-style links
create_citation_link <- function(text, url, title = NULL) {
  if (is.null(title)) {
    paste0("[", text, "](", url, ")")
  } else {
    paste0("[", text, "](", url, ' "', title, '")')
  }
}
```

### Original

The original visualization **Do younger Britons see 'kidult' hobbies as less childish?Do younger Britons see 'kidult' hobbies as less childish?** comes from `r create_link("Which ‘kidult’ hobbies and practices do Britons think are really for children?", data_secondary)`

<!-- ![Original visualization](`r chart_original`) -->

![Original visualization](https://raw.githubusercontent.com/poncest/MakeoverMonday/refs/heads/master/2025/Week_38/original_chart.png)

### Makeover

![Diverging bar chart showing generational differences in viewing activities as childish. Comic Books have the largest gap at +28 percentage points, with older adults more likely to see it as childish. Most activities follow this pattern, but Star Wars (-3 pts) and Disney Films (-6 pts) diverge in the opposite direction, with younger people more likely to view them as childish than older adults.](mm_2025_38.png){#fig-1}

### <mark> **Steps to Create this Graphic** </mark>

#### 1. Load Packages & Setup

```{r}
#| label: load
#| warning: false
#| message: false      
#| results: "hide"     

## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
  if (!require("pacman")) install.packages("pacman")
  pacman::p_load(
  tidyverse,  # Easily Install and Load the 'Tidyverse'
  ggtext,     # Improved Text Rendering Support for 'ggplot2'
  showtext,   # Using Fonts More Easily in R Graphs
  scales,     # Scale Functions for Visualization
  glue        # Interpreted String Literals
  )
})

### |- figure size ----
camcorder::gg_record(
    dir    = here::here("temp_plots"),
    device = "png",
    width  = 10,
    height = 8,
    units  = "in",
    dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))
```

#### 2. Read in the Data

```{r}
#| label: read
#| include: true
#| eval: true
#| warning: false
#| 
kidult_hobbies_raw <- readxl::read_excel(
  here::here('data/MakeoverMonday/2025/pct saying kidult hobbies are entirely or mostly for children.xlsx')) |> 
  janitor::clean_names()
```

#### 3. Examine the Data

```{r}
#| label: examine
#| include: true
#| eval: true
#| results: 'hide'
#| warning: false

glimpse(kidult_hobbies_raw)
skimr::skim_without_charts(kidult_hobbies_raw)
```

#### 4. Tidy Data

```{r}
#| label: tidy
#| warning: false

kidult_hobbies_long <- kidult_hobbies_raw |>
  pivot_longer(
    cols = -age_group,
    names_to = "hobby",
    values_to = "percentage"
  ) |>
  mutate(
    hobby_clean = str_replace_all(hobby, "_", " ") |>
      str_to_title() |>
      str_replace("D D", "(D&D)") |>
      str_replace("Dungeons And Dragons", "Dungeons & Dragons"),
    age_group = factor(age_group, levels = c("18-34", "35-49", "50-64", "65+"))
  )

# plot data
plot_data <- kidult_hobbies_long |>
  filter(age_group %in% c("18-34", "65+")) |>
  pivot_wider(names_from = age_group, values_from = percentage, names_prefix = "age_") |>
  mutate(
    age_gap = `age_65+` - `age_18-34`,
    gap_direction = ifelse(age_gap > 0, "Older view as more childish", "Younger view as more childish"),
    abs_gap = abs(age_gap),
    # Add category for story-telling
    activity_type = case_when(
      hobby_clean %in% c("Comic Books", "Receiving Birthday Presents", "Advent Calendars") ~ "Traditional Childhood",
      hobby_clean %in% c("Star Wars", "Disney Films") ~ "Entertainment Reversal",
      hobby_clean %in% c("Stuffed Animals", "Dressing Up In Costumes") ~ "Physical Play",
      TRUE ~ "Other"
    )
  ) |>
  arrange(desc(age_gap))
```

#### 5. Visualization Parameters

```{r}
#| label: params
#| include: true
#| warning: false

### |-  plot aesthetics ----
# Get base colors with custom palette
colors <- get_theme_colors(palette = c(
  "#2c3e50", "#e17055"
))   

### |-  titles and caption ----
title_text <- str_glue("The Great Generational Divide in 'Childish' Perceptions")

subtitle_text <-str_glue(
  "Difference between 65+ and 18-34 age groups reveals surprising patterns: while older Britons\n",
  "typically view more activities as childish, Star Wars and Disney Films show the opposite trend"
)

# Create caption
caption_text <- create_mm_caption(
  mm_year = current_year,
  mm_week = current_week,
  source_text = paste0("YouGov")
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
  base_theme,
  theme(
    # Legend formatting
    legend.position = "plot",
    legend.justification = "top",
    legend.margin = margin(l = 12, b = 5),
    legend.key.size = unit(0.8, "cm"),
    legend.box.margin = margin(b = 10),
    legend.title = element_text(face = "bold"),

    # Axis formatting
    axis.ticks.y = element_blank(),
    axis.ticks.x = element_line(color = "gray", linewidth = 0.5),
    # axis.ticks.length = unit(0.2, "cm"),
    axis.title.x = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(t = 10)
    ),
    axis.title.y = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(r = 10)
    ),
    axis.text.x = element_text(
      size = rel(0.85), family = fonts$subtitle,
      color = colors$text
    ),
    axis.text.y = element_text(
      size = rel(0.85), family = fonts$subtitle,
      color = colors$text
    ),

    # Grid lines
    panel.grid.minor = element_line(color = "#ecf0f1", linewidth = 0.2),
    panel.grid.major = element_line(color = "#ecf0f1", linewidth = 0.4),

    # Margin
    plot.margin = margin(20, 20, 20, 20)
  )
)

# Set theme
theme_set(weekly_theme)
```

#### 6. Plot

```{r}
#| label: plot
#| warning: false

### |- final plot ----
p <- ggplot(plot_data, aes(x = age_gap, y = reorder(hobby_clean, age_gap))) +

  # Annotate
  annotate("rect",
    xmin = -15, xmax = 0, ymin = -Inf, ymax = Inf,
    fill = colors$palette[2], alpha = 0.08
  ) +
  annotate("text",
    x = -7.5, y = 8.5, label = "Younger see as\nMORE childish",
    size = 3.5, color = colors$palette[2], fontface = "bold",
    family = fonts$text,
    hjust = 0.5, vjust = 0.5, alpha = 0.7
  ) +
  annotate("text",
    x = 15, y = 8.5, label = "Older see as\nMORE childish",
    family = fonts$text,
    size = 3.5, color = colors$palette[1], fontface = "bold",
    hjust = 0.5, vjust = 0.5, alpha = 0.7
  ) +

  # Geoms
  geom_col(aes(fill = gap_direction), alpha = 0.85, width = 0.75) +
  geom_text(
    aes(
      label = ifelse(abs(age_gap) >= 3,
        paste0(ifelse(age_gap > 0, "+", ""), round(age_gap, 0)), ""
      ),
      x = age_gap + ifelse(age_gap > 0, 1.2, -1.2)
    ),
    size = 3.2, fontface = "bold", color = colors$text,
    hjust = ifelse(plot_data$age_gap > 0, 0, 1)
  ) +
  geom_vline(xintercept = 0, color = "gray20", linewidth = 1, alpha = 0.8) +

  # Scales
  scale_fill_manual(
    values = c(
      "Older view as more childish" = colors$palette[1],
      "Younger view as more childish" = colors$palette[2]
    ),
    name = "Generation Gap Direction"
  ) +
  scale_x_continuous(
    labels = function(x) paste0(ifelse(x > 0, "+", ""), x, " pts"),
    breaks = seq(-15, 30, 5),
    limits = c(-15, 33),
    expand = expansion(mult = c(0.02, 0.02)),
    position = "top"
  ) +
  scale_y_discrete() +

  # Labs
  labs(
    title = title_text,
    subtitle = subtitle_text,
    caption = caption_text,
    x = "Percentage Point Difference (65+ minus 18-34)",
    y = NULL,
  ) +

  # Theme
  theme(
    # Grid
    panel.grid.major.x = element_line(color = "gray80", linewidth = 0.15),
    panel.grid.minor = element_blank(),
    panel.grid.major.y = element_blank(),

    # Legend
    legend.position = "none",
    axis.title.x.top = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(t = 10, b = 10)
    ),
    plot.title = element_text(
      size = rel(1.85),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      lineheight = 1.1,
      margin = margin(t = 5, b = 5)
    ),
    plot.subtitle = element_text(
      size = rel(0.90),
      family = fonts$subtitle,
      color = alpha(colors$subtitle, 0.9),
      lineheight = 1.2,
      margin = margin(t = 5, b = 10)
    ),
    plot.caption = element_markdown(
      size = rel(0.6),
      family = fonts$caption,
      color = colors$caption,
      hjust = 0.5,
      margin = margin(t = 15)
    )
  )
```

#### 7. Save

```{r}
#| label: save
#| warning: false

### |-  plot image ----  
save_plot(
  plot = p, 
  type = "makeovermonday", 
  year = current_year,
  week = current_week,
  width = 10, 
  height = 8
  )
```

#### 8. Session Info

::: {.callout-tip collapse="true"}
##### Expand for Session Info

```{r, echo = FALSE}
#| eval: true
#| warning: false

sessionInfo()
```
:::

#### 9. GitHub Repository

::: {.callout-tip collapse="true"}
##### Expand for GitHub Repo

The complete code for this analysis is available in `r create_link(project_file, repo_file)`.

For the full repository, `r create_link("click here", repo_main)`.
:::

#### 10. References

::: {.callout-tip collapse="true"}
##### Expand for References

1.  Data:

-   Makeover Monday `r current_year` Week `r current_week`: `r create_link("Which ‘kidult’ hobbies do Britons think are for children?", data_main)`

2.  Article

-   `r create_link("Which ‘kidult’ hobbies do Britons think are for children?", data_secondary)`
:::

© 2024 Steven Ponce

Source Issues