• Steven Ponce
  • About
  • Data Visualizations
  • Projects
  • Resume
  • Email

On this page

  • Original
  • Makeover
  • Steps to Create this Graphic
    • 1. Load Packages & Setup
    • 2. Read in the Data
    • 3. Examine the Data
    • 4. Tidy Data
    • 5. Visualization Parameters
    • 6. Plot
    • 7. Save
    • 8. Session Info
    • 9. GitHub Repository
    • 10. References
    • 11. Custom Functions Documentation

The Partisan Divide: Who Agrees More?m

  • Show All Code
  • Hide All Code

  • View Source

Net percentage point difference between Biden and Trump supporters on cultural issues

MakeoverMonday
Data Visualization
R Programming
2025
Visualizing stark partisan divides on 8 cultural issues using data from Pew Research Center’s 2024 election survey of 7,166 registered voters.
Published

October 29, 2025

Original

The original visualization comes from Cultural Issues and the 2024 Election

Original visualization

Makeover

Figure 1: Bar chart showing percentage-point differences between Biden and Trump supporters on cultural issues. Blue bars extend to the right for Biden’s advantages (legacy of slavery +52pp, openness +51pp, gender identity +50pp). Red bars extend left for Trump advantages (gun ownership -63pp, criminal justice -41pp, marriage priority -40pp).

Steps to Create this Graphic

1. Load Packages & Setup

Show code
```{r}
#| label: load
#| warning: false
#| message: false
#| results: "hide"

## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
  if (!require("pacman")) install.packages("pacman")
  pacman::p_load(
    tidyverse,  # Easily Install and Load the 'Tidyverse'
    ggtext,     # Improved Text Rendering Support for 'ggplot2'
    showtext,   # Using Fonts More Easily in R Graphs
    scales,     # Scale Functions for Visualization
    glue,       # Interpreted String Literals
    patchwork   # Using Fonts More Easily in R Graphs
  )
})

### |- figure size ----
camcorder::gg_record(
    dir    = here::here("temp_plots"),
    device = "png",
    width  = 8,
    height = 8,
    units  = "in",
    dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))
```

2. Read in the Data

Show code
```{r}
#| label: read
#| include: true
#| eval: true
#| warning: false
#|
pew_culture_wars_2024_raw <- read_csv(
  here::here('data/MakeoverMonday/2025/pew_culture_wars_2024.csv')) |> 
  janitor::clean_names()
```

3. Examine the Data

Show code
```{r}
#| label: examine
#| include: true
#| eval: true
#| results: 'hide'
#| warning: false

glimpse(pew_culture_wars_2024_raw )
skimr::skim_without_charts(pew_culture_wars_2024_raw )
```

4. Tidy Data

Show code
```{r}
#| label: tidy
#| warning: false

pew_tidy <- pew_culture_wars_2024_raw |>
  mutate(
    # Create concise, readable issue labels
    issue_label = case_when(
      str_detect(issue, "Gun ownership") ~ "Gun ownership increases safety",
      str_detect(issue, "legacy of slavery") ~ "Legacy of slavery affects Black Americans",
      str_detect(issue, "openness to people") ~ "America's openness is essential",
      str_detect(issue, "man or a woman") ~ "Gender identity beyond assigned sex",
      str_detect(issue, "criminal justice") ~ "Criminal justice not tough enough",
      str_detect(issue, "marriage and having children") ~ "Marriage and children should be priority",
      str_detect(issue, "Religion should be kept") ~ "Religion separate from government",
      str_detect(issue, "gains women have made") ~ "Women's gains at men's expense",
      TRUE ~ issue
    ),
    net_diff = biden_supporters_percent - trump_supporters_percent,
    advantage = if_else(net_diff > 0, "Biden", "Trump"),
    abs_diff = abs(net_diff),
    issue_label = str_wrap(issue_label, width = 25),
    issue_label = fct_reorder(issue_label, net_diff),
  ) 
```

5. Visualization Parameters

Show code
```{r}
#| label: params
#| include: true
#| warning: false

### |-  plot aesthetics ----
# Get base colors with custom palette
colors <- get_theme_colors(
  palette = c(
    "Biden" = "#2C5F8D",   
    "Trump" = "#C7352E" 
    )
  ) 
### |-  titles and caption ----
title_text <- str_glue("The Partisan Divide: Who Agrees More?")

subtitle_text <- str_glue(
    "Net percentage point difference between Biden and Trump supporters on cultural issues"
  )

# Create caption
caption_text <- create_mm_caption(
  mm_year = current_year,
  mm_week = current_week,
  source_text = "Pew Research Center, April 2024 (n=7,166 registered voters)<br>Note: Positive values indicate Biden supporters agree more; negative values indicate Trump supporters agree more"
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
  base_theme,
  theme(
    # # Text styling
    plot.title = element_text(
      size = rel(1.4), family = fonts$title, face = "bold",
      color = colors$title, lineheight = 1.1, hjust = 0,
      margin = margin(t = 5, b = 10)
    ),
    plot.subtitle = element_text(
      size = rel(0.9), family = fonts$subtitle, face = "italic",
      color = alpha(colors$subtitle, 0.9), lineheight = 1.1,
      margin = margin(t = 0, b = 20)
    ),
    
    # Legend formatting
    legend.position = "plot",
    legend.justification = "top",
    legend.margin = margin(l = 12, b = 5),
    legend.key.size = unit(0.8, "cm"),
    legend.box.margin = margin(b = 10),
    legend.title = element_text(face = "bold"),
    
    # Axis formatting
    axis.ticks.y = element_blank(),
    axis.ticks.x = element_line(color = "gray", linewidth = 0.5),
    axis.title.x = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(t = 10)
    ),
    axis.title.y = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(r = 10)
    ),
    axis.text.x = element_text(
      size = rel(0.85), family = fonts$subtitle,
      color = colors$text
    ),
    axis.text.y = element_text(
      size = rel(0.85), family = fonts$subtitle,
      color = colors$text
    ),
    
    # Grid lines
    panel.grid.minor = element_line(color = "#ecf0f1", linewidth = 0.2),
    panel.grid.major = element_line(color = "#ecf0f1", linewidth = 0.4),
    
    # Margin
    plot.margin = margin(20, 20, 20, 20)
  )
)

# Set theme
theme_set(weekly_theme)
```

6. Plot

Show code
```{r}
#| label: plot
#| warning: false

p <- pew_tidy |>
  ggplot(aes(x = net_diff, y = issue_label, fill = advantage)) +
  # Geoms
  geom_col(width = 0.65, alpha = 0.9) +
  geom_vline(xintercept = 0, color = "#1a1a1a", linewidth = 1) +
  geom_text(
    aes(
      label = paste0(ifelse(net_diff > 0, "+", ""), net_diff, "pp"),
      hjust = ifelse(net_diff > 0, -0.15, 1.15)
    ),
    size = 3.5,
    fontface = "bold",
    color = "#1a1a1a"
  ) +
  # Scales
  scale_fill_manual(
    values = colors$palette
  ) +
  scale_x_continuous(
    breaks = seq(-70, 70, 20),
    labels = function(x) paste0(abs(x), "pp"),
    limits = c(-75, 75),
    expand = c(0, 0)
  ) +
  # Annotate
  annotate(
    "text",
    x = -37.5, y = 8.5,
    label = "← Trump supporters agree more",
    color = colors$palette[2],
    fontface = "bold",
    size = 4,
    hjust = 0.5
  ) +
  annotate(
    "text",
    x = 37.5, y = 8.5,
    label = "Biden supporters agree more →",
    color = colors$palette[1],
    fontface = "bold",
    size = 4,
    hjust = 0.5
  ) +
  # Labs
  labs(
    title = title_text,
    subtitle = subtitle_text,
    caption = caption_text,
    x = "Percentage point difference",
    y = NULL,
  ) +
  # Theme
  theme(
    plot.title = element_text(
      size = rel(1.7),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      lineheight = 1.1,
      margin = margin(t = 5, b = 5)
    ),
    plot.subtitle = element_markdown(
      size = rel(0.90),
      family = fonts$subtitle,
      color = alpha(colors$subtitle, 0.9),
      lineheight = 1.2,
      margin = margin(t = 5, b = 20)
    ),
    plot.caption = element_markdown(
      size = rel(0.65),
      family = fonts$caption,
      color = colors$caption,
      hjust = 0.5,
      margin = margin(t = 10)
    ),
    panel.grid.major.y = element_blank(),
    panel.grid.major.x = element_line(color = "#e5e5e5", linewidth = 0.3),
    panel.grid.minor = element_blank(),
  )
```

7. Save

Show code
```{r}
#| label: save
#| warning: false

### |-  plot image ----  
save_plot(
  plot = p, 
  type = "makeovermonday", 
  year = current_year,
  week = current_week,
  width = 8, 
  height = 8
  )
```

8. Session Info

TipExpand for Session Info
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] here_1.0.1      patchwork_1.3.0 glue_1.8.0      scales_1.3.0   
 [5] showtext_0.9-7  showtextdb_3.0  sysfonts_0.8.9  ggtext_0.1.2   
 [9] lubridate_1.9.3 forcats_1.0.0   stringr_1.5.1   dplyr_1.1.4    
[13] purrr_1.0.2     readr_2.1.5     tidyr_1.3.1     tibble_3.2.1   
[17] ggplot2_3.5.1   tidyverse_2.0.0 pacman_0.5.1   

loaded via a namespace (and not attached):
 [1] gtable_0.3.6      xfun_0.49         htmlwidgets_1.6.4 tzdb_0.5.0       
 [5] vctrs_0.6.5       tools_4.4.0       generics_0.1.3    curl_6.0.0       
 [9] parallel_4.4.0    gifski_1.32.0-1   fansi_1.0.6       pkgconfig_2.0.3  
[13] skimr_2.1.5       lifecycle_1.0.4   compiler_4.4.0    farver_2.1.2     
[17] textshaping_0.4.0 munsell_0.5.1     repr_1.1.7        janitor_2.2.0    
[21] codetools_0.2-20  snakecase_0.11.1  htmltools_0.5.8.1 yaml_2.3.10      
[25] crayon_1.5.3      pillar_1.9.0      camcorder_0.1.0   magick_2.8.5     
[29] commonmark_1.9.2  tidyselect_1.2.1  digest_0.6.37     stringi_1.8.4    
[33] rsvg_2.6.1        rprojroot_2.0.4   fastmap_1.2.0     grid_4.4.0       
[37] colorspace_2.1-1  cli_3.6.4         magrittr_2.0.3    base64enc_0.1-3  
[41] utf8_1.2.4        withr_3.0.2       bit64_4.5.2       timechange_0.3.0 
[45] rmarkdown_2.29    bit_4.5.0         ragg_1.3.3        hms_1.1.3        
[49] evaluate_1.0.1    knitr_1.49        markdown_1.13     rlang_1.1.6      
[53] gridtext_0.1.5    Rcpp_1.0.13-1     xml2_1.3.6        renv_1.0.3       
[57] svglite_2.1.3     rstudioapi_0.17.1 vroom_1.6.5       jsonlite_1.8.9   
[61] R6_2.5.1          systemfonts_1.1.0

9. GitHub Repository

TipExpand for GitHub Repo

The complete code for this analysis is available in mm_2025_42.qmd.

For the full repository, click here.

10. References

TipExpand for References
  1. Data:
  • Makeover Monday 2025 Week 42: Cultural Issues and the 2024 Election
  1. Article
  • Cultural Issues and the 2024 Election

11. Custom Functions Documentation

Note📦 Custom Helper Functions

This analysis uses custom functions from my personal module library for efficiency and consistency across projects.

Functions Used:

  • fonts.R: setup_fonts(), get_font_families() - Font management with showtext
  • social_icons.R: create_social_caption() - Generates formatted social media captions
  • image_utils.R: save_plot() - Consistent plot saving with naming conventions
  • base_theme.R: create_base_theme(), extend_weekly_theme(), get_theme_colors() - Custom ggplot2 themes

Why custom functions?
These utilities standardize theming, fonts, and output across all my data visualizations. The core analysis (data tidying and visualization logic) uses only standard tidyverse packages.

Source Code:
View all custom functions → GitHub: R/utils

Back to top
Source Code
---
title: "The Partisan Divide: Who Agrees More?m"
subtitle: "Net percentage point difference between Biden and Trump supporters on cultural issues"
description: "Visualizing stark partisan divides on 8 cultural issues using data from Pew Research Center's 2024 election survey of 7,166 registered voters."
date: "2025-10-29" 
categories: ["MakeoverMonday", "Data Visualization", "R Programming", "2025"]   
tags: [
  "makeover-monday",
  "data-visualization",
  "ggplot2",
  "politics",
  "partisan-divide",
  "cultural-issues",
  "pew-research",
  "diverging-bars",
  "2024-election",
  "r-stats"
]
image: "thumbnails/mm_2025_42.png"
format:
  html:
    toc: true
    toc-depth: 5
    code-link: true
    code-fold: true
    code-tools: true
    code-summary: "Show code"
    self-contained: true
    theme: 
      light: [flatly, assets/styling/custom_styles.scss]
      dark: [darkly, assets/styling/custom_styles_dark.scss]
editor_options: 
  chunk_output_type: inline
execute: 
  freeze: true                                      
  cache: true                                       
  error: false
  message: false
  warning: false
  eval: true
---

```{r}
#| label: setup-links
#| include: false

# CENTRALIZED LINK MANAGEMENT

## Project-specific info 
current_year <- 2025
current_week <- 42
project_file <- "mm_2025_42.qmd"
project_image <- "mm_2025_42.png"

## Data Sources
data_main <- "https://data.world/makeovermonday/2025w42-cultural-issues-and-the-2024-election"
data_secondary <- "https://data.world/makeovermonday/2025w42-cultural-issues-and-the-2024-election"

## Repository Links  
repo_main <- "https://github.com/poncest/personal-website/"
repo_file <- paste0("https://github.com/poncest/personal-website/blob/master/data_visualizations/MakeoverMonday/", current_year, "/", project_file)

## External Resources/Images
chart_original <- "https://raw.githubusercontent.com/poncest/MakeoverMonday/refs/heads/master/2025/Week_42/original_chart.png"

## Organization/Platform Links
org_primary <- "https://www.pewresearch.org/politics/2024/06/06/cultural-issues-and-the-2024-election"
org_secondary <- "https://www.pewresearch.org/politics/2024/06/06/cultural-issues-and-the-2024-election"

# Helper function to create markdown links
create_link <- function(text, url) {
  paste0("[", text, "](", url, ")")
}

# Helper function for citation-style links
create_citation_link <- function(text, url, title = NULL) {
  if (is.null(title)) {
    paste0("[", text, "](", url, ")")
  } else {
    paste0("[", text, "](", url, ' "', title, '")')
  }
}
```

### Original

The original visualization comes from `r create_link("Cultural Issues and the 2024 Election", data_secondary)`

<!-- ![Original visualization](`r chart_original`) -->

![Original visualization](https://raw.githubusercontent.com/poncest/MakeoverMonday/refs/heads/master/2025/Week_42/original_chart.png)

### Makeover

![Bar chart showing percentage-point differences between Biden and Trump supporters on cultural issues. Blue bars extend to the right for Biden's advantages (legacy of slavery +52pp, openness +51pp, gender identity +50pp). Red bars extend left for Trump advantages (gun ownership -63pp, criminal justice -41pp, marriage priority -40pp).](mm_2025_42.png){#fig-1}

### <mark> **Steps to Create this Graphic** </mark>

#### 1. Load Packages & Setup

```{r}
#| label: load
#| warning: false
#| message: false      
#| results: "hide"     

## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
  if (!require("pacman")) install.packages("pacman")
  pacman::p_load(
    tidyverse,  # Easily Install and Load the 'Tidyverse'
    ggtext,     # Improved Text Rendering Support for 'ggplot2'
    showtext,   # Using Fonts More Easily in R Graphs
    scales,     # Scale Functions for Visualization
    glue,       # Interpreted String Literals
    patchwork   # Using Fonts More Easily in R Graphs
  )
})

### |- figure size ----
camcorder::gg_record(
    dir    = here::here("temp_plots"),
    device = "png",
    width  = 8,
    height = 8,
    units  = "in",
    dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))
```

#### 2. Read in the Data

```{r}
#| label: read
#| include: true
#| eval: true
#| warning: false
#| 
pew_culture_wars_2024_raw <- read_csv(
  here::here('data/MakeoverMonday/2025/pew_culture_wars_2024.csv')) |> 
  janitor::clean_names()
```

#### 3. Examine the Data

```{r}
#| label: examine
#| include: true
#| eval: true
#| results: 'hide'
#| warning: false

glimpse(pew_culture_wars_2024_raw )
skimr::skim_without_charts(pew_culture_wars_2024_raw )
```

#### 4. Tidy Data

```{r}
#| label: tidy
#| warning: false

pew_tidy <- pew_culture_wars_2024_raw |>
  mutate(
    # Create concise, readable issue labels
    issue_label = case_when(
      str_detect(issue, "Gun ownership") ~ "Gun ownership increases safety",
      str_detect(issue, "legacy of slavery") ~ "Legacy of slavery affects Black Americans",
      str_detect(issue, "openness to people") ~ "America's openness is essential",
      str_detect(issue, "man or a woman") ~ "Gender identity beyond assigned sex",
      str_detect(issue, "criminal justice") ~ "Criminal justice not tough enough",
      str_detect(issue, "marriage and having children") ~ "Marriage and children should be priority",
      str_detect(issue, "Religion should be kept") ~ "Religion separate from government",
      str_detect(issue, "gains women have made") ~ "Women's gains at men's expense",
      TRUE ~ issue
    ),
    net_diff = biden_supporters_percent - trump_supporters_percent,
    advantage = if_else(net_diff > 0, "Biden", "Trump"),
    abs_diff = abs(net_diff),
    issue_label = str_wrap(issue_label, width = 25),
    issue_label = fct_reorder(issue_label, net_diff),
  ) 
```

#### 5. Visualization Parameters

```{r}
#| label: params
#| include: true
#| warning: false

### |-  plot aesthetics ----
# Get base colors with custom palette
colors <- get_theme_colors(
  palette = c(
    "Biden" = "#2C5F8D",   
    "Trump" = "#C7352E" 
    )
  ) 
### |-  titles and caption ----
title_text <- str_glue("The Partisan Divide: Who Agrees More?")

subtitle_text <- str_glue(
    "Net percentage point difference between Biden and Trump supporters on cultural issues"
  )

# Create caption
caption_text <- create_mm_caption(
  mm_year = current_year,
  mm_week = current_week,
  source_text = "Pew Research Center, April 2024 (n=7,166 registered voters)<br>Note: Positive values indicate Biden supporters agree more; negative values indicate Trump supporters agree more"
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
  base_theme,
  theme(
    # # Text styling
    plot.title = element_text(
      size = rel(1.4), family = fonts$title, face = "bold",
      color = colors$title, lineheight = 1.1, hjust = 0,
      margin = margin(t = 5, b = 10)
    ),
    plot.subtitle = element_text(
      size = rel(0.9), family = fonts$subtitle, face = "italic",
      color = alpha(colors$subtitle, 0.9), lineheight = 1.1,
      margin = margin(t = 0, b = 20)
    ),
    
    # Legend formatting
    legend.position = "plot",
    legend.justification = "top",
    legend.margin = margin(l = 12, b = 5),
    legend.key.size = unit(0.8, "cm"),
    legend.box.margin = margin(b = 10),
    legend.title = element_text(face = "bold"),
    
    # Axis formatting
    axis.ticks.y = element_blank(),
    axis.ticks.x = element_line(color = "gray", linewidth = 0.5),
    axis.title.x = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(t = 10)
    ),
    axis.title.y = element_text(
      face = "bold", size = rel(0.85),
      margin = margin(r = 10)
    ),
    axis.text.x = element_text(
      size = rel(0.85), family = fonts$subtitle,
      color = colors$text
    ),
    axis.text.y = element_text(
      size = rel(0.85), family = fonts$subtitle,
      color = colors$text
    ),
    
    # Grid lines
    panel.grid.minor = element_line(color = "#ecf0f1", linewidth = 0.2),
    panel.grid.major = element_line(color = "#ecf0f1", linewidth = 0.4),
    
    # Margin
    plot.margin = margin(20, 20, 20, 20)
  )
)

# Set theme
theme_set(weekly_theme)
```

#### 6. Plot

```{r}
#| label: plot
#| warning: false

p <- pew_tidy |>
  ggplot(aes(x = net_diff, y = issue_label, fill = advantage)) +
  # Geoms
  geom_col(width = 0.65, alpha = 0.9) +
  geom_vline(xintercept = 0, color = "#1a1a1a", linewidth = 1) +
  geom_text(
    aes(
      label = paste0(ifelse(net_diff > 0, "+", ""), net_diff, "pp"),
      hjust = ifelse(net_diff > 0, -0.15, 1.15)
    ),
    size = 3.5,
    fontface = "bold",
    color = "#1a1a1a"
  ) +
  # Scales
  scale_fill_manual(
    values = colors$palette
  ) +
  scale_x_continuous(
    breaks = seq(-70, 70, 20),
    labels = function(x) paste0(abs(x), "pp"),
    limits = c(-75, 75),
    expand = c(0, 0)
  ) +
  # Annotate
  annotate(
    "text",
    x = -37.5, y = 8.5,
    label = "← Trump supporters agree more",
    color = colors$palette[2],
    fontface = "bold",
    size = 4,
    hjust = 0.5
  ) +
  annotate(
    "text",
    x = 37.5, y = 8.5,
    label = "Biden supporters agree more →",
    color = colors$palette[1],
    fontface = "bold",
    size = 4,
    hjust = 0.5
  ) +
  # Labs
  labs(
    title = title_text,
    subtitle = subtitle_text,
    caption = caption_text,
    x = "Percentage point difference",
    y = NULL,
  ) +
  # Theme
  theme(
    plot.title = element_text(
      size = rel(1.7),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      lineheight = 1.1,
      margin = margin(t = 5, b = 5)
    ),
    plot.subtitle = element_markdown(
      size = rel(0.90),
      family = fonts$subtitle,
      color = alpha(colors$subtitle, 0.9),
      lineheight = 1.2,
      margin = margin(t = 5, b = 20)
    ),
    plot.caption = element_markdown(
      size = rel(0.65),
      family = fonts$caption,
      color = colors$caption,
      hjust = 0.5,
      margin = margin(t = 10)
    ),
    panel.grid.major.y = element_blank(),
    panel.grid.major.x = element_line(color = "#e5e5e5", linewidth = 0.3),
    panel.grid.minor = element_blank(),
  )

```

#### 7. Save

```{r}
#| label: save
#| warning: false

### |-  plot image ----  
save_plot(
  plot = p, 
  type = "makeovermonday", 
  year = current_year,
  week = current_week,
  width = 8, 
  height = 8
  )
```

#### 8. Session Info

::: {.callout-tip collapse="true"}
##### Expand for Session Info

```{r, echo = FALSE}
#| eval: true
#| warning: false

sessionInfo()
```
:::

#### 9. GitHub Repository

::: {.callout-tip collapse="true"}
##### Expand for GitHub Repo

The complete code for this analysis is available in `r create_link(project_file, repo_file)`.

For the full repository, `r create_link("click here", repo_main)`.
:::

#### 10. References

::: {.callout-tip collapse="true"}
##### Expand for References

1.  Data:

-   Makeover Monday `r current_year` Week `r current_week`: `r create_link("Cultural Issues and the 2024 Election", data_main)`

2.  Article

-   `r create_link("Cultural Issues and the 2024 Election", data_secondary)`
:::

#### 11. Custom Functions Documentation

::: {.callout-note collapse="true"}
##### 📦 Custom Helper Functions

This analysis uses custom functions from my personal module library for efficiency and consistency across projects.

**Functions Used:**

-   **`fonts.R`**: `setup_fonts()`, `get_font_families()` - Font management with showtext
-   **`social_icons.R`**: `create_social_caption()` - Generates formatted social media captions
-   **`image_utils.R`**: `save_plot()` - Consistent plot saving with naming conventions
-   **`base_theme.R`**: `create_base_theme()`, `extend_weekly_theme()`, `get_theme_colors()` - Custom ggplot2 themes

**Why custom functions?**\
These utilities standardize theming, fonts, and output across all my data visualizations. The core analysis (data tidying and visualization logic) uses only standard tidyverse packages.

**Source Code:**\
View all custom functions → [GitHub: R/utils](https://github.com/poncest/personal-website/tree/master/R)
:::

© 2024 Steven Ponce

Source Issues