• Steven Ponce
  • About
  • Data Visualizations
  • Projects
  • Resume
  • Email

On this page

  • Steps to Create this Graphic
    • 1. Load Packages & Setup
    • 2. Read in the Data
    • 3. Examine the Data
    • 4. Tidy Data
    • 5. Visualization Parameters
    • 6. Plot
    • 7. Save
    • 8. Session Info
    • 9. GitHub Repository
    • 10. References

A Tale of Pixar’s Evolution: Duration and Reception

  • Show All Code
  • Hide All Code

  • View Source

How Pixar films have evolved in length and how audiences vs critics perceive them.

TidyTuesday
Data Visualization
R Programming
2025
An analysis of Pixar’s film evolution examining how movie durations have increased over time and comparing audience and critic reception patterns across their filmography. Visualizations reveal interesting patterns in run times and reception across different eras and franchises.
Author

Steven Ponce

Published

March 10, 2025

Figure 1: A two-panel visualization titled ‘A Tale of Pixar’s Evolution: Duration and Reception.’ The top panel shows ‘The Evolution of Pixar Film Durations (1995-2023)’ with a scatter plot and trend line demonstrating how Pixar films have increased in length from around 80 minutes to over 150 minutes, with points color-coded by film. The bottom panel displays ‘Audience vs. Critic Reception of Pixar Films’ comparing Cinema Score (audience ratings) on the y-axis with Rotten Tomatoes (critic consensus) on the x-axis. Films are grouped into four quadrants: Universal Acclaim, Critic Favorite, Audience Favorite, and Mixed Reception, revealing patterns in how different Pixar films are received by audiences versus critics.

Steps to Create this Graphic

1. Load Packages & Setup

Show code
## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
if (!require("pacman")) install.packages("pacman")
pacman::p_load(
    tidyverse,      # Easily Install and Load the 'Tidyverse'
    ggtext,         # Improved Text Rendering Support for 'ggplot2'
    showtext,       # Using Fonts More Easily in R Graphs
    janitor,        # Simple Tools for Examining and Cleaning Dirty Data
    skimr,          # Compact and Flexible Summaries of Data
    scales,         # Scale Functions for Visualization
    glue,           # Interpreted String Literals
    here,           # A Simpler Way to Find Your Files
    camcorder,      # Record Your Plot History 
    patchwork,      # The Composer of Plots # The Composer of Plots # The Composer of Plots
    ggrepel         # Position Non-Overlapping Text Labels with 'ggplot2'
    )
})

### |- figure size ----
gg_record(
    dir    = here::here("temp_plots"),
    device = "png",
    width  =  8,
    height =  10,
    units  = "in",
    dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))

2. Read in the Data

Show code
tt <- tidytuesdayR::tt_load(2025, week = 10) 

pixar_films <- tt$pixar_films |> clean_names()
public_response <- tt$public_response |> clean_names()

tidytuesdayR::readme(tt)
rm(tt)

3. Examine the Data

Show code
glimpse(pixar_films)
skim(pixar_films)

glimpse(public_response)
skim(public_response)

4. Tidy Data

Show code
### |-  tidy data ----
# Combine the data for easier analysis
pixar_combined <- pixar_films |>
    left_join(public_response, by = "film")

# P1. Film Duration's ----

# Define eras for P1
p1_data <- pixar_combined |>
    mutate(
        era = case_when(
            release_date < as.Date("2001-01-01") ~ "Early Years (1995-2000)",
            release_date < as.Date("2006-01-01") ~ "Finding Nemo Era (2001-2005)",
            release_date < as.Date("2011-01-01") ~ "Golden Age (2006-2010)",
            release_date < as.Date("2016-01-01") ~ "Brave New World (2011-2015)",
            TRUE ~ "Modern Era (2016+)"
        )
    ) |> 
    filter(!is.na(film))

# Define era boundary lines
era_boundaries <- data.frame(
    x = as.Date(c("2001-01-01", "2006-01-01", "2011-01-01", "2016-01-01")),
    ymin = 70,
    ymax = 160
)

# Era labels coordinates
era_labels <- data.frame(
    x = as.Date(c("1997-06-01", "2003-06-01", "2008-06-01", "2013-06-01", "2020-06-01")),
    y = c(rep(160, 5)),
    label = c("Early Years", "Finding\nNemo Era", "Golden Age", "Brave New\nWorld", "Modern Era")
)

# P2. Audience vs. Critic Reception ----
p2_data <- pixar_combined |>  
    filter(!is.na(rotten_tomatoes) & !is.na(cinema_score)) |>
    mutate(
        # Convert Cinema Score to numeric
        cinema_score_numeric = case_when(
            cinema_score == "A+" ~ 10,
            cinema_score == "A" ~ 9,
            cinema_score == "A-" ~ 8.5,
            cinema_score == "B+" ~ 8,
            cinema_score == "B" ~ 7,
            cinema_score == "B-" ~ 6.5,
            TRUE ~ 5
        ),
        # Create release year groups
        release_decade = case_when(
            release_date < as.Date("2000-01-01") ~ "1995-1999",
            release_date < as.Date("2010-01-01") ~ "2000-2009",
            release_date < as.Date("2020-01-01") ~ "2010-2019",
            TRUE ~ "2020+"
        ),
        # Create selective labeling flag
        label_film = case_when(
            cinema_score_numeric >= 9 & rotten_tomatoes < 90 ~ TRUE,
            cinema_score_numeric < 10 & rotten_tomatoes >= 99 ~ TRUE,
            rotten_tomatoes < 50 ~ TRUE,
            film %in% c("Toy Story", "Inside Out", "Coco", "Soul") ~ TRUE,
            TRUE ~ FALSE
        )
    )

# Create a filtered dataframe for labels
p2_labels <- p2_data |> filter(label_film == TRUE)

# Define reception area dividing lines
reception_lines <- data.frame(
    type = c("vertical_1",  "horizontal"),
    x1 = c(90, 40),
    y1 = c(5, 9),
    x2 = c(90, 105),
    y2 = c(10.5, 9)
)

5. Visualization Parameters

Show code
### |-  plot aesthetics ----
# Color for P1
colors <- get_theme_colors(palette = c(
    "gray40", "gray60", "gray70", "gray80", "#87BBA2")
    )

### |-  titles and caption ----
title_text <- str_glue("A Tale of Pixar's Evolution: Duration and Reception")

subtitle_text <- str_glue("How Pixar films have evolved in length and how audiences vs critics perceive them.")

# Create caption
caption_text <- create_social_caption(
    tt_year = 2025,
    tt_week = 10,
    source_text =  "pixarfilms R package" 
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
    base_theme,
    theme(
        # Text styling 
        plot.title = element_text(face = "bold", family = fonts$title, size = rel(1.14), margin = margin(b = 10)),
        plot.subtitle = element_text(family = fonts$subtitle, color = colors$text, size = rel(0.78), margin = margin(b = 20)),
        
        # Axis elements
        axis.title = element_text(color = colors$text, face = "bold", size = rel(0.8)),
        axis.text = element_text(color = colors$text, size = rel(0.7)),
        
        # Grid elements
        panel.grid.minor = element_line(color = "gray80", linewidth = 0.05),
        panel.grid.major = element_line(color = "gray80", linewidth = 0.02),
        
        # Legend elements
        legend.position = "plot",
        legend.title = element_text(family = fonts$text, size = rel(0.8)),
        legend.text = element_text(family = fonts$text, size = rel(0.7)),
        
        # Plot margins 
        plot.margin = margin(t = 10, r = 10, b = 10, l = 10),
    )
)

# Set theme
theme_set(weekly_theme)

6. Plot

Show code
### |-  Plot  ----
# P1. Film Duration's ----
p1 <- ggplot(p1_data, aes(x = release_date, y = run_time)) +
  # Geoms
  geom_vline(
    data = era_boundaries,
    aes(xintercept = x),
    linetype = "dotted",
    color = colors$palette[2],
    alpha = 0.4
  ) +
  geom_smooth(
    method = "loess", se = FALSE, color = colors$palette[1],
    linewidth = 0.5, alpha = 0.6, linetype = "dashed", na.rm = TRUE
  ) +
  geom_text_repel(
    aes(label = film),
    size = 3,
    max.overlaps = 10,
    box.padding = 0.5,
    colour = colors$palette[1],
    segment.color = colors$palette[3],
    min.segment.length = 0.2,
    seed = 123
  ) +
  geom_point(size = 3, color = colors$palette[5], alpha = 0.9, na.rm = TRUE) +
  # Annotate
  annotate(
    "text",
    x = era_labels$x,
    y = era_labels$y,
    label = era_labels$label,
    alpha = 0.8,
    fontface = "bold",
    size = 3
  ) +
  # Scales
  scale_x_date(
    date_breaks = "5 years",
    date_labels = "%Y",
    limits = c(as.Date("1994-01-01"), NA)
  ) +
  scale_y_continuous(
    breaks = seq(80, 180, by = 10),
  ) +
  coord_cartesian(clip = "off") +
  # Labs
  labs(
    title = "The Evolution of Pixar Film Durations (1995-2023)",
    subtitle = "From 80-minute early films to 100+ minute modern features",
    x = "Release Date",
    y = "Run Time (minutes)"
  )

# P2. Audience vs. Critic Reception ----
p2 <- ggplot(p2_data, aes(x = rotten_tomatoes, y = cinema_score_numeric)) +
  # Geoms
  geom_segment(
    data = reception_lines,
    aes(x = x1, y = y1, xend = x2, yend = y2),
    linetype = "dotted", color = colors$palette[1], alpha = 0.8
  ) +
  geom_text_repel(
    data = p2_labels,
    aes(label = film),
    size = 3,
    box.padding = 0.8,
    point.padding = 0.5,
    colour = colors$palette[1],
    segment.color = colors$palette[3],
    min.segment.length = 0.2,
    max.overlaps = 30,
    force = 3,
    seed = 145
  ) +
  geom_point(
    aes(size = 3),
    color = colors$palette[5], alpha = 0.8
  ) +
  # Annotate
  annotate(
    "text",
    x = 105, y = 10.8,
    label = "Universal Acclaim",
    size = 3, fontface = "bold", alpha = 0.7,
    color = colors$palette[1],
    hjust = 1
  ) +
  annotate(
    "text",
    x = 105, y = 7,
    label = "Critic Favorite",
    size = 3, fontface = "bold", alpha = 0.7,
    color = colors$palette[1],
    hjust = 1
  ) +
  annotate(
    "text",
    x = 75, y = 10.8,
    label = "Audience Favorite",
    size = 3, fontface = "bold", alpha = 0.7,
    color = colors$palette[1],
    hjust = 0.5
  ) +
  annotate(
    "text",
    x = 75, y = 7,
    label = "Mixed Reception",
    size = 3, fontface = "bold", alpha = 0.7,
    color = colors$palette[1],
    hjust = 0.5
  ) +
  # Scales
  scale_color_brewer(
    palette = "Set1",
    name = "Film Era"
  ) +
  scale_size_continuous(
    range = c(2, 5),
    name = "Runtime (min)"
  ) +
  scale_y_continuous(
    breaks = c(10, 9, 8.5, 8, 7, 6.5),
    labels = c("A+", "A", "A-", "B+", "B", "B-"),
    limits = c(6, 10.8),
    minor_breaks = NULL,
    expand = expansion(mult = c(0.02, 0.02))
  ) +
  scale_x_continuous(
    breaks = seq(40, 100, by = 10),
    limits = c(40, 105),
    minor_breaks = NULL,
    expand = expansion(mult = c(0.02, 0.02))
  ) +
  coord_cartesian(clip = "off") +
  # Labs
  labs(
    title = "Audience vs. Critic Reception of Pixar Films",
    subtitle = "Comparing Cinema Score (audience ratings) with Rotten Tomatoes (critic consensus)",
    y = "Cinema Score (audience rating)",
    x = "Rotten Tomatoes Score (critic rating)"
  ) 

# Combined Plot -----
combined_plot <- (p1 / plot_spacer() / p2) +
  plot_layout(
    height = c(1, 0.005, 1),
    ncol = 1
  )

combined_plot <- combined_plot +
  plot_annotation(
    title = title_text,
    subtitle = subtitle_text,
    caption = caption_text,
    theme = theme(
      plot.title = element_text(
        size = rel(1.8),
        family = fonts$title,
        face = "bold",
        color = colors$title,
        lineheight = 1.1,
        margin = margin(t = 5, b = 5)
      ),
      plot.subtitle = element_text(
        size = rel(0.85),
        family = fonts$subtitle,
        color = colors$subtitle,
        lineheight = 1.2,
        margin = margin(t = 5, b = 10)
      ),
      plot.caption = element_markdown(
        size   = rel(0.65),
        family = fonts$caption,
        color  = colors$caption,
        hjust  = 0.5,
        margin = margin(t = 10)
      ),
      plot.margin = margin(t = 20, r = 10, b = 20, l = 10),
    )
  )

7. Save

Show code
### |-  plot image ----  
save_plot_patchwork(
  plot = combined_plot, 
  type = "tidytuesday", 
  year = 2025, 
  week = 10, 
  width = 8,
  height = 10
)

8. Session Info

TipExpand for Session Info
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] ggrepel_0.9.6   patchwork_1.3.0 camcorder_0.1.0 here_1.0.1     
 [5] glue_1.8.0      scales_1.3.0    skimr_2.1.5     janitor_2.2.0  
 [9] showtext_0.9-7  showtextdb_3.0  sysfonts_0.8.9  ggtext_0.1.2   
[13] lubridate_1.9.3 forcats_1.0.0   stringr_1.5.1   dplyr_1.1.4    
[17] purrr_1.0.2     readr_2.1.5     tidyr_1.3.1     tibble_3.2.1   
[21] ggplot2_3.5.1   tidyverse_2.0.0 pacman_0.5.1   

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1   farver_2.1.2       fastmap_1.2.0      gh_1.4.1          
 [5] digest_0.6.37      timechange_0.3.0   lifecycle_1.0.4    rsvg_2.6.1        
 [9] magrittr_2.0.3     compiler_4.4.0     rlang_1.1.4        tools_4.4.0       
[13] utf8_1.2.4         yaml_2.3.10        knitr_1.49         htmlwidgets_1.6.4 
[17] bit_4.5.0          curl_6.0.0         xml2_1.3.6         repr_1.1.7        
[21] tidytuesdayR_1.1.2 withr_3.0.2        grid_4.4.0         fansi_1.0.6       
[25] colorspace_2.1-1   gitcreds_0.1.2     cli_3.6.3          rmarkdown_2.29    
[29] crayon_1.5.3       generics_0.1.3     rstudioapi_0.17.1  tzdb_0.4.0        
[33] commonmark_1.9.2   splines_4.4.0      parallel_4.4.0     ggplotify_0.1.2   
[37] base64enc_0.1-3    vctrs_0.6.5        yulab.utils_0.1.8  Matrix_1.7-0      
[41] jsonlite_1.8.9     gridGraphics_0.5-1 hms_1.1.3          bit64_4.5.2       
[45] systemfonts_1.1.0  magick_2.8.5       gifski_1.32.0-1    codetools_0.2-20  
[49] stringi_1.8.4      gtable_0.3.6       munsell_0.5.1      pillar_1.9.0      
[53] rappdirs_0.3.3     htmltools_0.5.8.1  R6_2.5.1           httr2_1.0.6       
[57] rprojroot_2.0.4    lattice_0.22-6     vroom_1.6.5        evaluate_1.0.1    
[61] markdown_1.13      gridtext_0.1.5     snakecase_0.11.1   renv_1.0.3        
[65] Rcpp_1.0.13-1      nlme_3.1-164       svglite_2.1.3      mgcv_1.9-1        
[69] xfun_0.49          fs_1.6.5           pkgconfig_2.0.3   

9. GitHub Repository

TipExpand for GitHub Repo

The complete code for this analysis is available in tt_2025_10.qmd.

For the full repository, click here.

10. References

TipExpand for References
  1. Data Sources:

    • TidyTuesday 2025 Week 10: Pixar Films
Back to top
Source Code
---
title: "A Tale of Pixar's Evolution: Duration and Reception"
subtitle: "How Pixar films have evolved in length and how audiences vs critics perceive them."
description: "An analysis of Pixar's film evolution examining how movie durations have increased over time and comparing audience and critic reception patterns across their filmography. Visualizations reveal interesting patterns in run times and reception across different eras and franchises."
author: "Steven Ponce"
date: "2025-03-10" 
categories: ["TidyTuesday", "Data Visualization", "R Programming", "2025"]
tags: [
 "pixar",
"film analysis", 
"data storytelling",
"ggplot2",
"animation",
"movie ratings",
"cinema",
"audience reception",
"film critics",
"time series",
"entertainment data",
"patchwork"
]
image: "thumbnails/tt_2025_10.png"
format:
  html:
    toc: true
    toc-depth: 5
    code-link: true
    code-fold: true
    code-tools: true
    code-summary: "Show code"
    self-contained: true
    theme: 
      light: [flatly, assets/styling/custom_styles.scss]
      dark: [darkly, assets/styling/custom_styles_dark.scss]
editor_options: 
  chunk_output_type: inline
execute: 
  freeze: true                                                  
  cache: true                                                   
  error: false
  message: false
  warning: false
  eval: true
# filters:
#   - social-share
# share:
#   permalink: "https://stevenponce.netlify.app/data_visualizations/TidyTuesday/2025/tt_2025_10.html"
#   description: "Exploring 25+ years of Pixar films: See how movie lengths have grown over time and discover which films critics loved but audiences didn't (and vice versa)! #TidyTuesday #DataViz"
# 
#   twitter: true
#   linkedin: true
#   email: true
#   facebook: false
#   reddit: false
#   stumble: false
#   tumblr: false
#   mastodon: true
#   bsky: true
---

![A two-panel visualization titled 'A Tale of Pixar's Evolution: Duration and Reception.' The top panel shows 'The Evolution of Pixar Film Durations (1995-2023)' with a scatter plot and trend line demonstrating how Pixar films have increased in length from around 80 minutes to over 150 minutes, with points color-coded by film. The bottom panel displays 'Audience vs. Critic Reception of Pixar Films' comparing Cinema Score (audience ratings) on the y-axis with Rotten Tomatoes (critic consensus) on the x-axis. Films are grouped into four quadrants: Universal Acclaim, Critic Favorite, Audience Favorite, and Mixed Reception, revealing patterns in how different Pixar films are received by audiences versus critics.](tt_2025_10.png){#fig-1}


### <mark> **Steps to Create this Graphic** </mark>

#### 1. Load Packages & Setup

```{r}
#| label: load
#| warning: false
#| message: false      
#| results: "hide"     

## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
if (!require("pacman")) install.packages("pacman")
pacman::p_load(
    tidyverse,      # Easily Install and Load the 'Tidyverse'
    ggtext,         # Improved Text Rendering Support for 'ggplot2'
    showtext,       # Using Fonts More Easily in R Graphs
    janitor,        # Simple Tools for Examining and Cleaning Dirty Data
    skimr,          # Compact and Flexible Summaries of Data
    scales,         # Scale Functions for Visualization
    glue,           # Interpreted String Literals
    here,           # A Simpler Way to Find Your Files
    camcorder,      # Record Your Plot History 
    patchwork,      # The Composer of Plots # The Composer of Plots # The Composer of Plots
    ggrepel         # Position Non-Overlapping Text Labels with 'ggplot2'
    )
})

### |- figure size ----
gg_record(
    dir    = here::here("temp_plots"),
    device = "png",
    width  =  8,
    height =  10,
    units  = "in",
    dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))
```

#### 2. Read in the Data

```{r}
#| label: read
#| include: true
#| eval: true
#| warning: false

tt <- tidytuesdayR::tt_load(2025, week = 10) 

pixar_films <- tt$pixar_films |> clean_names()
public_response <- tt$public_response |> clean_names()

tidytuesdayR::readme(tt)
rm(tt)
```

#### 3. Examine the Data

```{r}
#| label: examine
#| include: true
#| eval: true
#| results: 'hide'
#| warning: false

glimpse(pixar_films)
skim(pixar_films)

glimpse(public_response)
skim(public_response)
```

#### 4. Tidy Data

```{r}
#| label: tidy
#| warning: false

### |-  tidy data ----
# Combine the data for easier analysis
pixar_combined <- pixar_films |>
    left_join(public_response, by = "film")

# P1. Film Duration's ----

# Define eras for P1
p1_data <- pixar_combined |>
    mutate(
        era = case_when(
            release_date < as.Date("2001-01-01") ~ "Early Years (1995-2000)",
            release_date < as.Date("2006-01-01") ~ "Finding Nemo Era (2001-2005)",
            release_date < as.Date("2011-01-01") ~ "Golden Age (2006-2010)",
            release_date < as.Date("2016-01-01") ~ "Brave New World (2011-2015)",
            TRUE ~ "Modern Era (2016+)"
        )
    ) |> 
    filter(!is.na(film))

# Define era boundary lines
era_boundaries <- data.frame(
    x = as.Date(c("2001-01-01", "2006-01-01", "2011-01-01", "2016-01-01")),
    ymin = 70,
    ymax = 160
)

# Era labels coordinates
era_labels <- data.frame(
    x = as.Date(c("1997-06-01", "2003-06-01", "2008-06-01", "2013-06-01", "2020-06-01")),
    y = c(rep(160, 5)),
    label = c("Early Years", "Finding\nNemo Era", "Golden Age", "Brave New\nWorld", "Modern Era")
)

# P2. Audience vs. Critic Reception ----
p2_data <- pixar_combined |>  
    filter(!is.na(rotten_tomatoes) & !is.na(cinema_score)) |>
    mutate(
        # Convert Cinema Score to numeric
        cinema_score_numeric = case_when(
            cinema_score == "A+" ~ 10,
            cinema_score == "A" ~ 9,
            cinema_score == "A-" ~ 8.5,
            cinema_score == "B+" ~ 8,
            cinema_score == "B" ~ 7,
            cinema_score == "B-" ~ 6.5,
            TRUE ~ 5
        ),
        # Create release year groups
        release_decade = case_when(
            release_date < as.Date("2000-01-01") ~ "1995-1999",
            release_date < as.Date("2010-01-01") ~ "2000-2009",
            release_date < as.Date("2020-01-01") ~ "2010-2019",
            TRUE ~ "2020+"
        ),
        # Create selective labeling flag
        label_film = case_when(
            cinema_score_numeric >= 9 & rotten_tomatoes < 90 ~ TRUE,
            cinema_score_numeric < 10 & rotten_tomatoes >= 99 ~ TRUE,
            rotten_tomatoes < 50 ~ TRUE,
            film %in% c("Toy Story", "Inside Out", "Coco", "Soul") ~ TRUE,
            TRUE ~ FALSE
        )
    )

# Create a filtered dataframe for labels
p2_labels <- p2_data |> filter(label_film == TRUE)

# Define reception area dividing lines
reception_lines <- data.frame(
    type = c("vertical_1",  "horizontal"),
    x1 = c(90, 40),
    y1 = c(5, 9),
    x2 = c(90, 105),
    y2 = c(10.5, 9)
)
```

#### 5. Visualization Parameters

```{r}
#| label: params
#| include: true
#| warning: false

### |-  plot aesthetics ----
# Color for P1
colors <- get_theme_colors(palette = c(
    "gray40", "gray60", "gray70", "gray80", "#87BBA2")
    )

### |-  titles and caption ----
title_text <- str_glue("A Tale of Pixar's Evolution: Duration and Reception")

subtitle_text <- str_glue("How Pixar films have evolved in length and how audiences vs critics perceive them.")

# Create caption
caption_text <- create_social_caption(
    tt_year = 2025,
    tt_week = 10,
    source_text =  "pixarfilms R package" 
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
    base_theme,
    theme(
        # Text styling 
        plot.title = element_text(face = "bold", family = fonts$title, size = rel(1.14), margin = margin(b = 10)),
        plot.subtitle = element_text(family = fonts$subtitle, color = colors$text, size = rel(0.78), margin = margin(b = 20)),
        
        # Axis elements
        axis.title = element_text(color = colors$text, face = "bold", size = rel(0.8)),
        axis.text = element_text(color = colors$text, size = rel(0.7)),
        
        # Grid elements
        panel.grid.minor = element_line(color = "gray80", linewidth = 0.05),
        panel.grid.major = element_line(color = "gray80", linewidth = 0.02),
        
        # Legend elements
        legend.position = "plot",
        legend.title = element_text(family = fonts$text, size = rel(0.8)),
        legend.text = element_text(family = fonts$text, size = rel(0.7)),
        
        # Plot margins 
        plot.margin = margin(t = 10, r = 10, b = 10, l = 10),
    )
)

# Set theme
theme_set(weekly_theme)
```

#### 6. Plot

```{r}
#| label: plot
#| warning: false

### |-  Plot  ----
# P1. Film Duration's ----
p1 <- ggplot(p1_data, aes(x = release_date, y = run_time)) +
  # Geoms
  geom_vline(
    data = era_boundaries,
    aes(xintercept = x),
    linetype = "dotted",
    color = colors$palette[2],
    alpha = 0.4
  ) +
  geom_smooth(
    method = "loess", se = FALSE, color = colors$palette[1],
    linewidth = 0.5, alpha = 0.6, linetype = "dashed", na.rm = TRUE
  ) +
  geom_text_repel(
    aes(label = film),
    size = 3,
    max.overlaps = 10,
    box.padding = 0.5,
    colour = colors$palette[1],
    segment.color = colors$palette[3],
    min.segment.length = 0.2,
    seed = 123
  ) +
  geom_point(size = 3, color = colors$palette[5], alpha = 0.9, na.rm = TRUE) +
  # Annotate
  annotate(
    "text",
    x = era_labels$x,
    y = era_labels$y,
    label = era_labels$label,
    alpha = 0.8,
    fontface = "bold",
    size = 3
  ) +
  # Scales
  scale_x_date(
    date_breaks = "5 years",
    date_labels = "%Y",
    limits = c(as.Date("1994-01-01"), NA)
  ) +
  scale_y_continuous(
    breaks = seq(80, 180, by = 10),
  ) +
  coord_cartesian(clip = "off") +
  # Labs
  labs(
    title = "The Evolution of Pixar Film Durations (1995-2023)",
    subtitle = "From 80-minute early films to 100+ minute modern features",
    x = "Release Date",
    y = "Run Time (minutes)"
  )

# P2. Audience vs. Critic Reception ----
p2 <- ggplot(p2_data, aes(x = rotten_tomatoes, y = cinema_score_numeric)) +
  # Geoms
  geom_segment(
    data = reception_lines,
    aes(x = x1, y = y1, xend = x2, yend = y2),
    linetype = "dotted", color = colors$palette[1], alpha = 0.8
  ) +
  geom_text_repel(
    data = p2_labels,
    aes(label = film),
    size = 3,
    box.padding = 0.8,
    point.padding = 0.5,
    colour = colors$palette[1],
    segment.color = colors$palette[3],
    min.segment.length = 0.2,
    max.overlaps = 30,
    force = 3,
    seed = 145
  ) +
  geom_point(
    aes(size = 3),
    color = colors$palette[5], alpha = 0.8
  ) +
  # Annotate
  annotate(
    "text",
    x = 105, y = 10.8,
    label = "Universal Acclaim",
    size = 3, fontface = "bold", alpha = 0.7,
    color = colors$palette[1],
    hjust = 1
  ) +
  annotate(
    "text",
    x = 105, y = 7,
    label = "Critic Favorite",
    size = 3, fontface = "bold", alpha = 0.7,
    color = colors$palette[1],
    hjust = 1
  ) +
  annotate(
    "text",
    x = 75, y = 10.8,
    label = "Audience Favorite",
    size = 3, fontface = "bold", alpha = 0.7,
    color = colors$palette[1],
    hjust = 0.5
  ) +
  annotate(
    "text",
    x = 75, y = 7,
    label = "Mixed Reception",
    size = 3, fontface = "bold", alpha = 0.7,
    color = colors$palette[1],
    hjust = 0.5
  ) +
  # Scales
  scale_color_brewer(
    palette = "Set1",
    name = "Film Era"
  ) +
  scale_size_continuous(
    range = c(2, 5),
    name = "Runtime (min)"
  ) +
  scale_y_continuous(
    breaks = c(10, 9, 8.5, 8, 7, 6.5),
    labels = c("A+", "A", "A-", "B+", "B", "B-"),
    limits = c(6, 10.8),
    minor_breaks = NULL,
    expand = expansion(mult = c(0.02, 0.02))
  ) +
  scale_x_continuous(
    breaks = seq(40, 100, by = 10),
    limits = c(40, 105),
    minor_breaks = NULL,
    expand = expansion(mult = c(0.02, 0.02))
  ) +
  coord_cartesian(clip = "off") +
  # Labs
  labs(
    title = "Audience vs. Critic Reception of Pixar Films",
    subtitle = "Comparing Cinema Score (audience ratings) with Rotten Tomatoes (critic consensus)",
    y = "Cinema Score (audience rating)",
    x = "Rotten Tomatoes Score (critic rating)"
  ) 

# Combined Plot -----
combined_plot <- (p1 / plot_spacer() / p2) +
  plot_layout(
    height = c(1, 0.005, 1),
    ncol = 1
  )

combined_plot <- combined_plot +
  plot_annotation(
    title = title_text,
    subtitle = subtitle_text,
    caption = caption_text,
    theme = theme(
      plot.title = element_text(
        size = rel(1.8),
        family = fonts$title,
        face = "bold",
        color = colors$title,
        lineheight = 1.1,
        margin = margin(t = 5, b = 5)
      ),
      plot.subtitle = element_text(
        size = rel(0.85),
        family = fonts$subtitle,
        color = colors$subtitle,
        lineheight = 1.2,
        margin = margin(t = 5, b = 10)
      ),
      plot.caption = element_markdown(
        size   = rel(0.65),
        family = fonts$caption,
        color  = colors$caption,
        hjust  = 0.5,
        margin = margin(t = 10)
      ),
      plot.margin = margin(t = 20, r = 10, b = 20, l = 10),
    )
  )
```

#### 7. Save

```{r}
#| label: save
#| warning: false

### |-  plot image ----  
save_plot_patchwork(
  plot = combined_plot, 
  type = "tidytuesday", 
  year = 2025, 
  week = 10, 
  width = 8,
  height = 10
)
```

#### 8. Session Info

::: {.callout-tip collapse="true"}
##### Expand for Session Info

```{r, echo = FALSE}
#| eval: true
#| warning: false

sessionInfo()
```
:::

#### 9. GitHub Repository

::: {.callout-tip collapse="true"}
##### Expand for GitHub Repo

The complete code for this analysis is available in [`tt_2025_10.qmd`](https://github.com/poncest/personal-website/blob/master/data_visualizations/TidyTuesday/2025/tt_2025_10.qmd).

For the full repository, [click here](https://github.com/poncest/personal-website/).
:::


#### 10. References
::: {.callout-tip collapse="true"}
##### Expand for References

1. Data Sources:

   - TidyTuesday 2025 Week 10: [Pixar Films](https://github.com/rfordatascience/tidytuesday/blob/main/data/2025/2025-03-11)

:::

© 2024 Steven Ponce

Source Issues