• Steven Ponce
  • About
  • Data Visualizations
  • Projects
  • Email

On this page

  • Steps to Create this Graphic
    • 1. Load Packages & Setup
    • 2. Read in the Data
    • 3. Examine the Data
    • 4. Tidy Data
    • 5. Visualization Parameters
    • 6. Plot
    • 7. Save
    • 8. Session Info
    • 9. GitHub Repository
    • 10. References

The API Graveyard: A Tale of Digital Neglect

  • Show All Code
  • Hide All Code

  • View Source

40% of APIs are never updated after being added to the catalog

TidyTuesday
Data Visualization
R Programming
2025
A TidyTuesday analysis revealing that 40% of APIs are never updated after publication. Using APIs.guru data, this visualization shows maintenance patterns across providers and the timeline of API updates from 2016-2022.
Author

Steven Ponce

Published

June 17, 2025

Figure 1: “Two-chart visualization showing API maintenance crisis. Top scatter plot reveals 40% of APIs (1,011 red dots at bottom) are never updated after publication, while 60% (1,518 gray dots) receive updates over time from 2016-2022. Bottom bar chart shows provider-specific abandonment rates, with companies like Xero.com, Vtex.local, and government sites showing 100% abandonment, while Amazon has the lowest rate at 21.8%.”

Steps to Create this Graphic

1. Load Packages & Setup

Show code
```{r}
#| label: load
#| warning: false
#| message: false
#| results: "hide"

## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
if (!require("pacman")) install.packages("pacman")
pacman::p_load(
  tidyverse,  # Easily Install and Load the 'Tidyverse'
  ggtext,     # Improved Text Rendering Support for 'ggplot2'
  showtext,   # Using Fonts More Easily in R Graphs
  janitor,    # Simple Tools for Examining and Cleaning Dirty Data
  scales,     # Scale Functions for Visualization
  glue,       # Interpreted String Literals
  patchwork   # The Composer of Plots
  )})

### |- figure size ----
camcorder::gg_record(
  dir    = here::here("temp_plots"),
  device = "png",
  width  =  8,
  height =  10,
  units  = "in",
  dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))
```

2. Read in the Data

Show code
```{r}
#| label: read
#| include: true
#| eval: true
#| warning: false

tt <- tidytuesdayR::tt_load(2025, week = 24)

info_raw <- tt$api_info |> clean_names()
apis_raw <- tt$apisguru_apis |> clean_names()

tidytuesdayR::readme(tt)
rm(tt)
```

3. Examine the Data

Show code
```{r}
#| label: examine
#| include: true
#| eval: true
#| results: 'hide'
#| warning: false

glimpse(info_raw)
glimpse(apis_raw)
```

4. Tidy Data

Show code
```{r}
#| label: tidy
#| warning: false

### |-  tidy data ----
apis_minimal <- apis_raw |>
  left_join(info_raw, by = "name") |>
  select(name, added, updated, provider_name) |>
  mutate(
    added_date = as_date(added),
    updated_date = as_date(updated)
  ) |>
  filter(!is.na(added_date), !is.na(updated_date))

# P1. The API Graveyard Data ----
maintenance_analysis <- apis_minimal |>
  mutate(
    days_between_add_update = as.numeric(updated_date - added_date),
    same_day_update = days_between_add_update == 0,
    days_for_viz = ifelse(days_between_add_update == 0, 0.5, days_between_add_update)
  ) |>
  filter(days_between_add_update >= 0)

# Calculate key statistics
total_apis <- nrow(maintenance_analysis)
never_updated_count <- sum(maintenance_analysis$same_day_update)
never_updated_pct <- round(never_updated_count / total_apis * 100, 1)
updated_count <- total_apis - never_updated_count
updated_pct <- round(updated_count / total_apis * 100, 1)

# P2. Provider Analysis ----
provider_analysis <- apis_minimal |>
  mutate(
    days_between_add_update = as.numeric(updated_date - added_date),
    same_day_update = days_between_add_update == 0
  ) |>
  filter(days_between_add_update >= 0) |>
  group_by(provider_name) |>
  filter(n() >= 3) |>
  summarise(
    total_apis = n(),
    never_updated_apis = sum(same_day_update),
    abandonment_rate = round((never_updated_apis / total_apis) * 100, 1),
    .groups = "drop"
  ) |>
  filter(abandonment_rate > 0) |>
  arrange(desc(abandonment_rate)) |>
  head(15) |> # Top 15 by abandonment rate
  mutate(
    provider_clean = str_trunc(str_to_title(provider_name), 35),
    provider_clean = fct_reorder(provider_clean, abandonment_rate)
  )
```

5. Visualization Parameters

Show code
```{r}
#| label: params
#| include: true
#| warning: false

### |-  plot aesthetics ----
colors <- get_theme_colors(
  palette = c("#95A5A6", "#E74C3C", "#7F8C8D")
)

### |-  titles and caption ----
caption_text <- create_social_caption(
  tt_year = 2025,
  tt_week = 24,
  source_text =  "APIs.guru"
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
  base_theme,
  theme(
    # Axis elements
    axis.text = element_text(color = colors$text, size = rel(0.7)),
    axis.title.x = element_text(color = colors$text, face = "bold", size = rel(0.8), margin = margin(t = 15)),
    axis.title.y = element_text(color = colors$text, face = "bold", size = rel(0.8), margin = margin(r = 10)),

    # Grid elements
    panel.grid.major.y = element_line(color = "gray50", linewidth = 0.05),
    panel.grid.minor = element_blank(),
    panel.grid.major.x = element_blank(),

    # Legend elements
    legend.position = "plot",
    legend.title = element_text(family = fonts$tsubtitle, color = colors$text, size = rel(0.8), face = "bold"),
    legend.text = element_text(family = fonts$tsubtitle, color = colors$text, size = rel(0.7)),

    # Plot margins
    plot.margin = margin(t = 15, r = 15, b = 15, l = 15),
  )
)

# Set theme
theme_set(weekly_theme)
```

6. Plot

Show code
```{r}
#| label: plot
#| warning: false

# P1. The API Graveyard Plot ----
p1 <- maintenance_analysis |>
  ggplot(aes(x = added_date, y = days_for_viz)) +
  # Geoms
  geom_point(
    data = maintenance_analysis |> filter(!same_day_update),
    color = colors$palette[1], size = 1.5, alpha = 0.6
  ) +
  geom_point(
    data = maintenance_analysis |> filter(same_day_update),
    color = colors$palette[2], size = 2.5, alpha = 0.9
  ) +
  # Scales
  scale_y_log10(
    labels = comma_format(),
    limits = c(0.1, NA),
    breaks = c(0.5, 1, 10, 100, 1000)
  ) +
  # Annotations
  annotate("text",
    x = as.Date("2016-06-01"), y = 12,
    label = paste0("Gray dots: Updated after addition\n(", updated_count, " APIs • ", updated_pct, "%)"),
    color = colors$palette[1], size = 3.5, fontface = "bold",
    hjust = 0, vjust = 0
  ) +
  annotate("text",
    x = as.Date("2016-06-01"), y = 0.9,
    label = paste0("Red dots: Never updated\n(", never_updated_count, " APIs • ", never_updated_pct, "%)"),
    color = colors$palette[2], size = 3.5, fontface = "bold",
    hjust = 0, vjust = 0
  ) +
  # Labs
  labs(
    title = "<span style='color:#E74C3C'>**The API Graveyard**</span>: A Tale of Digital Neglect",
    subtitle = paste0("**", never_updated_pct, "%** of APIs are <span style='color:#E74C3C'>**never updated**</span> after being added to the catalog<br><br>",
                      "<span style='color:#1a1a1a; font-size:14px'>**Days Since Last Update (log scale)**</span>"),
    x = "Date Added to APIs.guru",
    y = NULL,
  ) +
  # Theme
  theme(
    plot.title = element_markdown(
      size = rel(1.4),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      lineheight = 1.1,
      margin = margin(t = 0, b = 5)
    ),
    plot.subtitle = element_markdown(
      size = rel(0.95),
      family = fonts$subtitle,
      color = alpha(colors$subtitle, 0.9),
      lineheight = 1.2,
      margin = margin(t = 5, b = 10)
    ),
    panel.grid.minor = element_blank(),
    legend.position = "none"
  )

# P2. Provider Responsibility Breakdown Plot ----
p2 <- provider_analysis |>
  ggplot(aes(x = provider_clean, y = abandonment_rate)) +
  # Geoms
  geom_col(fill = colors$palette[2], alpha = 0.7, width = 0.7) +
  geom_text(aes(label = paste0(abandonment_rate, "% •  (", never_updated_apis, "/", total_apis, ")")),
    hjust = -0.1, size = 3, color = "gray50", fontface = "bold"
  ) +
  # Scales
  scale_y_continuous(
    limits = c(0, 124),
    expand = c(0, 0)
  ) +
  coord_flip() +
  # Labs
  labs(
    title = "**API Maintenance Patterns by Provider**",
    subtitle = "Providers with the highest rates of APIs that were never updated after initial publication",
    x = NULL,
    y = "% of APIs Never Updated After Addition",
  ) +
  # Theme
  theme(
    plot.title = element_markdown(
      size = rel(1.4),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      lineheight = 1.1,
      margin = margin(t = 5, b = 5)
    ),
    plot.subtitle = element_markdown(
      size = rel(0.95),
      family = fonts$subtitle,
      color = alpha(colors$subtitle, 0.9),
      lineheight = 1.2,
      margin = margin(t = 5, b = 10)
    ),
    panel.grid.major.y = element_blank(),
    panel.grid.minor = element_blank(),
    axis.text.y = element_text(size = 9),
    plot.caption = element_text(size = 8, color = colors$palette[3])
  )


# Final plot -----
combined_plot <- p1 / p2 +
  plot_layout(heights = c(1.2, 1))

combined_plot <- combined_plot +
  plot_annotation(
    caption = caption_text,
    theme = theme(
      plot.caption = element_markdown(
        size = rel(0.6),
        family = fonts$caption,
        color = colors$caption,
        hjust = 0.5,
        margin = margin(t = 10)
      )
    )
  )
```

7. Save

Show code
```{r}
#| label: save
#| warning: false

### |-  plot image ----  
save_plot_patchwork(
  plot = combined_plot, 
  type = "tidytuesday", 
  year = 2025, 
  week = 24, 
  width  =  8,
  height =  10
)
```

8. Session Info

Expand for Session Info
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] here_1.0.1      patchwork_1.3.0 glue_1.8.0      scales_1.3.0   
 [5] janitor_2.2.0   showtext_0.9-7  showtextdb_3.0  sysfonts_0.8.9 
 [9] ggtext_0.1.2    lubridate_1.9.3 forcats_1.0.0   stringr_1.5.1  
[13] dplyr_1.1.4     purrr_1.0.2     readr_2.1.5     tidyr_1.3.1    
[17] tibble_3.2.1    ggplot2_3.5.1   tidyverse_2.0.0 pacman_0.5.1   

loaded via a namespace (and not attached):
 [1] gtable_0.3.6       httr2_1.0.6        xfun_0.49          htmlwidgets_1.6.4 
 [5] gh_1.4.1           tzdb_0.5.0         yulab.utils_0.1.8  vctrs_0.6.5       
 [9] tools_4.4.0        generics_0.1.3     parallel_4.4.0     curl_6.0.0        
[13] gifski_1.32.0-1    fansi_1.0.6        pkgconfig_2.0.3    ggplotify_0.1.2   
[17] lifecycle_1.0.4    compiler_4.4.0     farver_2.1.2       munsell_0.5.1     
[21] codetools_0.2-20   snakecase_0.11.1   htmltools_0.5.8.1  yaml_2.3.10       
[25] crayon_1.5.3       pillar_1.9.0       camcorder_0.1.0    magick_2.8.5      
[29] commonmark_1.9.2   tidyselect_1.2.1   digest_0.6.37      stringi_1.8.4     
[33] labeling_0.4.3     rsvg_2.6.1         rprojroot_2.0.4    fastmap_1.2.0     
[37] grid_4.4.0         colorspace_2.1-1   cli_3.6.4          magrittr_2.0.3    
[41] utf8_1.2.4         withr_3.0.2        rappdirs_0.3.3     bit64_4.5.2       
[45] timechange_0.3.0   rmarkdown_2.29     tidytuesdayR_1.1.2 gitcreds_0.1.2    
[49] bit_4.5.0          hms_1.1.3          evaluate_1.0.1     knitr_1.49        
[53] markdown_1.13      gridGraphics_0.5-1 rlang_1.1.6        gridtext_0.1.5    
[57] Rcpp_1.0.13-1      xml2_1.3.6         renv_1.0.3         vroom_1.6.5       
[61] svglite_2.1.3      rstudioapi_0.17.1  jsonlite_1.8.9     R6_2.5.1          
[65] fs_1.6.5           systemfonts_1.1.0 

9. GitHub Repository

Expand for GitHub Repo

The complete code for this analysis is available in tt_2025_24.qmd.

For the full repository, click here.

10. References

Expand for References
  1. Data Sources:
  • TidyTuesday 2025 Week 24: [API Specs](https://github.com/rfordatascience/tidytuesday/blob/main/data/2025/2025-06-17
Back to top
Source Code
---
title: "The API Graveyard: A Tale of Digital Neglect"
subtitle: "40% of APIs are never updated after being added to the catalog"
description: "A TidyTuesday analysis revealing that 40% of APIs are never updated after publication. Using APIs.guru data, this visualization shows maintenance patterns across providers and the timeline of API updates from 2016-2022."
author: "Steven Ponce"
date: "2025-06-17" 
categories: ["TidyTuesday", "Data Visualization", "R Programming", "2025"]
tags: [
  "APIs", "Software Maintenance", "Technical Debt", "Digital Infrastructure",
  "Data Analysis", "ggplot2", "APIs.guru", "Software Engineering",
  "Tech Industry", "Data Storytelling", "R", "Scatter Plot", "Bar Chart",
  "Open Source", "Developer Tools", "Software Lifecycle", "Code Maintenance",
  "Tech Trends"
]
image: "thumbnails/tt_2025_24.png"
format:
  html:
    toc: true
    toc-depth: 5
    code-link: true
    code-fold: true
    code-tools: true
    code-summary: "Show code"
    self-contained: true
    theme: 
      light: [flatly, assets/styling/custom_styles.scss]
      dark: [darkly, assets/styling/custom_styles_dark.scss]
editor_options: 
  chunk_output_type: inline
execute: 
  freeze: true                                                  
  cache: true                                                   
  error: false
  message: false
  warning: false
  eval: true
---

!["Two-chart visualization showing API maintenance crisis. Top scatter plot reveals 40% of APIs (1,011 red dots at bottom) are never updated after publication, while 60% (1,518 gray dots) receive updates over time from 2016-2022. Bottom bar chart shows provider-specific abandonment rates, with companies like Xero.com, Vtex.local, and government sites showing 100% abandonment, while Amazon has the lowest rate at 21.8%."](tt_2025_24.png){#fig-1}

### <mark> **Steps to Create this Graphic** </mark>

#### 1. Load Packages & Setup

```{r}
#| label: load
#| warning: false
#| message: false      
#| results: "hide"     

## 1. LOAD PACKAGES & SETUP ----
suppressPackageStartupMessages({
if (!require("pacman")) install.packages("pacman")
pacman::p_load(
  tidyverse,  # Easily Install and Load the 'Tidyverse'
  ggtext,     # Improved Text Rendering Support for 'ggplot2'
  showtext,   # Using Fonts More Easily in R Graphs
  janitor,    # Simple Tools for Examining and Cleaning Dirty Data
  scales,     # Scale Functions for Visualization
  glue,       # Interpreted String Literals
  patchwork   # The Composer of Plots
  )})

### |- figure size ----
camcorder::gg_record(
  dir    = here::here("temp_plots"),
  device = "png",
  width  =  8,
  height =  10,
  units  = "in",
  dpi    = 320
)

# Source utility functions
suppressMessages(source(here::here("R/utils/fonts.R")))
source(here::here("R/utils/social_icons.R"))
source(here::here("R/utils/image_utils.R"))
source(here::here("R/themes/base_theme.R"))
```

#### 2. Read in the Data

```{r}
#| label: read
#| include: true
#| eval: true
#| warning: false

tt <- tidytuesdayR::tt_load(2025, week = 24)

info_raw <- tt$api_info |> clean_names()
apis_raw <- tt$apisguru_apis |> clean_names()

tidytuesdayR::readme(tt)
rm(tt)
```

#### 3. Examine the Data

```{r}
#| label: examine
#| include: true
#| eval: true
#| results: 'hide'
#| warning: false

glimpse(info_raw)
glimpse(apis_raw)
```

#### 4. Tidy Data

```{r}
#| label: tidy
#| warning: false

### |-  tidy data ----
apis_minimal <- apis_raw |>
  left_join(info_raw, by = "name") |>
  select(name, added, updated, provider_name) |>
  mutate(
    added_date = as_date(added),
    updated_date = as_date(updated)
  ) |>
  filter(!is.na(added_date), !is.na(updated_date))

# P1. The API Graveyard Data ----
maintenance_analysis <- apis_minimal |>
  mutate(
    days_between_add_update = as.numeric(updated_date - added_date),
    same_day_update = days_between_add_update == 0,
    days_for_viz = ifelse(days_between_add_update == 0, 0.5, days_between_add_update)
  ) |>
  filter(days_between_add_update >= 0)

# Calculate key statistics
total_apis <- nrow(maintenance_analysis)
never_updated_count <- sum(maintenance_analysis$same_day_update)
never_updated_pct <- round(never_updated_count / total_apis * 100, 1)
updated_count <- total_apis - never_updated_count
updated_pct <- round(updated_count / total_apis * 100, 1)

# P2. Provider Analysis ----
provider_analysis <- apis_minimal |>
  mutate(
    days_between_add_update = as.numeric(updated_date - added_date),
    same_day_update = days_between_add_update == 0
  ) |>
  filter(days_between_add_update >= 0) |>
  group_by(provider_name) |>
  filter(n() >= 3) |>
  summarise(
    total_apis = n(),
    never_updated_apis = sum(same_day_update),
    abandonment_rate = round((never_updated_apis / total_apis) * 100, 1),
    .groups = "drop"
  ) |>
  filter(abandonment_rate > 0) |>
  arrange(desc(abandonment_rate)) |>
  head(15) |> # Top 15 by abandonment rate
  mutate(
    provider_clean = str_trunc(str_to_title(provider_name), 35),
    provider_clean = fct_reorder(provider_clean, abandonment_rate)
  )
```

#### 5. Visualization Parameters

```{r}
#| label: params
#| include: true
#| warning: false

### |-  plot aesthetics ----
colors <- get_theme_colors(
  palette = c("#95A5A6", "#E74C3C", "#7F8C8D")
)

### |-  titles and caption ----
caption_text <- create_social_caption(
  tt_year = 2025,
  tt_week = 24,
  source_text =  "APIs.guru"
)

### |-  fonts ----
setup_fonts()
fonts <- get_font_families()

### |-  plot theme ----

# Start with base theme
base_theme <- create_base_theme(colors)

# Add weekly-specific theme elements
weekly_theme <- extend_weekly_theme(
  base_theme,
  theme(
    # Axis elements
    axis.text = element_text(color = colors$text, size = rel(0.7)),
    axis.title.x = element_text(color = colors$text, face = "bold", size = rel(0.8), margin = margin(t = 15)),
    axis.title.y = element_text(color = colors$text, face = "bold", size = rel(0.8), margin = margin(r = 10)),

    # Grid elements
    panel.grid.major.y = element_line(color = "gray50", linewidth = 0.05),
    panel.grid.minor = element_blank(),
    panel.grid.major.x = element_blank(),

    # Legend elements
    legend.position = "plot",
    legend.title = element_text(family = fonts$tsubtitle, color = colors$text, size = rel(0.8), face = "bold"),
    legend.text = element_text(family = fonts$tsubtitle, color = colors$text, size = rel(0.7)),

    # Plot margins
    plot.margin = margin(t = 15, r = 15, b = 15, l = 15),
  )
)

# Set theme
theme_set(weekly_theme)
```

#### 6. Plot

```{r}
#| label: plot
#| warning: false

# P1. The API Graveyard Plot ----
p1 <- maintenance_analysis |>
  ggplot(aes(x = added_date, y = days_for_viz)) +
  # Geoms
  geom_point(
    data = maintenance_analysis |> filter(!same_day_update),
    color = colors$palette[1], size = 1.5, alpha = 0.6
  ) +
  geom_point(
    data = maintenance_analysis |> filter(same_day_update),
    color = colors$palette[2], size = 2.5, alpha = 0.9
  ) +
  # Scales
  scale_y_log10(
    labels = comma_format(),
    limits = c(0.1, NA),
    breaks = c(0.5, 1, 10, 100, 1000)
  ) +
  # Annotations
  annotate("text",
    x = as.Date("2016-06-01"), y = 12,
    label = paste0("Gray dots: Updated after addition\n(", updated_count, " APIs • ", updated_pct, "%)"),
    color = colors$palette[1], size = 3.5, fontface = "bold",
    hjust = 0, vjust = 0
  ) +
  annotate("text",
    x = as.Date("2016-06-01"), y = 0.9,
    label = paste0("Red dots: Never updated\n(", never_updated_count, " APIs • ", never_updated_pct, "%)"),
    color = colors$palette[2], size = 3.5, fontface = "bold",
    hjust = 0, vjust = 0
  ) +
  # Labs
  labs(
    title = "<span style='color:#E74C3C'>**The API Graveyard**</span>: A Tale of Digital Neglect",
    subtitle = paste0("**", never_updated_pct, "%** of APIs are <span style='color:#E74C3C'>**never updated**</span> after being added to the catalog<br><br>",
                      "<span style='color:#1a1a1a; font-size:14px'>**Days Since Last Update (log scale)**</span>"),
    x = "Date Added to APIs.guru",
    y = NULL,
  ) +
  # Theme
  theme(
    plot.title = element_markdown(
      size = rel(1.4),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      lineheight = 1.1,
      margin = margin(t = 0, b = 5)
    ),
    plot.subtitle = element_markdown(
      size = rel(0.95),
      family = fonts$subtitle,
      color = alpha(colors$subtitle, 0.9),
      lineheight = 1.2,
      margin = margin(t = 5, b = 10)
    ),
    panel.grid.minor = element_blank(),
    legend.position = "none"
  )

# P2. Provider Responsibility Breakdown Plot ----
p2 <- provider_analysis |>
  ggplot(aes(x = provider_clean, y = abandonment_rate)) +
  # Geoms
  geom_col(fill = colors$palette[2], alpha = 0.7, width = 0.7) +
  geom_text(aes(label = paste0(abandonment_rate, "% •  (", never_updated_apis, "/", total_apis, ")")),
    hjust = -0.1, size = 3, color = "gray50", fontface = "bold"
  ) +
  # Scales
  scale_y_continuous(
    limits = c(0, 124),
    expand = c(0, 0)
  ) +
  coord_flip() +
  # Labs
  labs(
    title = "**API Maintenance Patterns by Provider**",
    subtitle = "Providers with the highest rates of APIs that were never updated after initial publication",
    x = NULL,
    y = "% of APIs Never Updated After Addition",
  ) +
  # Theme
  theme(
    plot.title = element_markdown(
      size = rel(1.4),
      family = fonts$title,
      face = "bold",
      color = colors$title,
      lineheight = 1.1,
      margin = margin(t = 5, b = 5)
    ),
    plot.subtitle = element_markdown(
      size = rel(0.95),
      family = fonts$subtitle,
      color = alpha(colors$subtitle, 0.9),
      lineheight = 1.2,
      margin = margin(t = 5, b = 10)
    ),
    panel.grid.major.y = element_blank(),
    panel.grid.minor = element_blank(),
    axis.text.y = element_text(size = 9),
    plot.caption = element_text(size = 8, color = colors$palette[3])
  )


# Final plot -----
combined_plot <- p1 / p2 +
  plot_layout(heights = c(1.2, 1))

combined_plot <- combined_plot +
  plot_annotation(
    caption = caption_text,
    theme = theme(
      plot.caption = element_markdown(
        size = rel(0.6),
        family = fonts$caption,
        color = colors$caption,
        hjust = 0.5,
        margin = margin(t = 10)
      )
    )
  )
```

#### 7. Save

```{r}
#| label: save
#| warning: false

### |-  plot image ----  
save_plot_patchwork(
  plot = combined_plot, 
  type = "tidytuesday", 
  year = 2025, 
  week = 24, 
  width  =  8,
  height =  10
)
```

#### 8. Session Info

::: {.callout-tip collapse="true"}
##### Expand for Session Info

```{r, echo = FALSE}
#| eval: true
#| warning: false

sessionInfo()
```
:::

#### 9. GitHub Repository

::: {.callout-tip collapse="true"}
##### Expand for GitHub Repo

The complete code for this analysis is available in [`tt_2025_24.qmd`](https://github.com/poncest/personal-website/blob/master/data_visualizations/TidyTuesday/2025/tt_2025_24.qmd).

For the full repository, [click here](https://github.com/poncest/personal-website/).
:::

#### 10. References

::: {.callout-tip collapse="true"}
##### Expand for References

1.  Data Sources:

-   TidyTuesday 2025 Week 24: [API Specs](https://github.com/rfordatascience/tidytuesday/blob/main/data/2025/2025-06-17
:::

© 2024 Steven Ponce

Source Issues